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Chapter 1

Simplicial complexes & CW complexes

1.1 The Klein bottle as a simplicial complex

The following example constructs the Klein bottle as a simplicial complex K on 9 vertices, and
then constructs the cellular chain complex C, = C.(K) from which the integral homology groups
H\(K,Z) =7, ®Z, Hy(K,7Z) = 0 are computed. The chain complex D, = C, ®z Z; is also constructed
and used to compute the mod-2 homology vector spaces H|(K,Z,) = Z, © Z,, H»(K,Z) = Z,. Fi-

nally, a presentation 71 (K) = (x,y : yxy~'x) is computed for the fundamental group of K.
Example

gap> 2simplices:=

> [[1,2,5], [2,5,8], [2,3,8], [3,8,91, [1,3,9]1, [1,4,9],

> [4,5,8], [4,6,8], [6,8,9], [6,7,9], [4,7,9], [4,5,7],
> [1,4,6]1, [1,2,6]1, [2,6,71, [2,3,7], [3,5,71, [1,3,511;;
gap> K:=SimplicialComplex(2simplices);

Simplicial complex of dimension 2.

gap> C:=ChainComplex (K) ;
Chain complex of length 2 in characteristic 0 .

gap> Homology(C,1);
[ 2, 0]

gap> Homology(C,2);
[ 1]

gap> D:=TensorWithIntegersModP(C,2);
Chain complex of length 2 in characteristic 2 .

gap> Homology(D,1);
2
gap> Homology(D,2);
1

gap> G:=FundamentalGroup (K) ;

<fp group of size infinity on the generators [ f1, £f2 1>
gap> Relators0fFpGroup(G);

[ f2*f1*£f27-1%f1 ]
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1.2 Other simplicial surfaces

The following example constructs the real projective plane P, the Klein bottle K and the torus T as
simplicial complexes, using the surface genus g as input in the oriented case and —g as input in the
unoriented cases. It then confirms that the connected sums M = K#P and N = T#P have the same

integral homology.

Example
gap> P:=ClosedSurface(-1);
Simplicial complex of dimension 2.

gap> K:=ClosedSurface(-2);
Simplicial complex of dimension 2.

gap> T:=ClosedSurface(1);
Simplicial complex of dimension 2.

gap> M:=ConnectedSum(K,P);
Simplicial complex of dimension 2.

gap> N:=ConnectedSum(T,P);
Simplicial complex of dimension 2.

gap> Homology(M,0);
[ 0]

gap> Homology(N,0);
[ 0]

gap> Homology(M,1);
[2, 0,01

gap> Homology(N,1);
[2, 0,01

gap> Homology(M,2);
[ 1]

gap> Homology(N,2);
[ 1]

1.3 The Quillen complex

Given a group G one can consider the partially ordered set <7, (G) of all non-trivial elementary abelian
p-subgroups of G, the partial order being set inclusion. The order complex A<7,(G) is a simplicial

complex which is called the Quillen complex .

The following example constructs the Quillen complex A.e% (S7) for the symmetric group of degree

7 and p = 2. This simplicial complex involves 11291 simplices, of which 4410 are 2-simplices..
Example

gap> K:=QuillenComplex (SymmetricGroup(7),2);
Simplicial complex of dimension 2.

gap> Size(K);
11291
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gap> K!.nrSimplices(2);
4410

1.4 The Quillen complex as a reduced CW-complex

Any simplicial complex K can be regarded as a regular CW complex. Different datatypes are used
in HAP for these two notions. The following continuation of the above Quillen complex example
constructs a regular CW complex Y isomorphic to (i.e. with the same face lattice as) K = Aa(S7).
An advantage to working in the category of CW complexes is that it may be possible to find a CW
complex X homotopy equivalent to Y but with fewer cells than Y. The cellular chain complex C,(X) of
such a CW complex X is computed by the following commands. From the number of free generators
of C,(X), which correspond to the cells of X, we see that there is a single 0-cell and 160 2-cells.
Thus the Quillen complex $$\Delta{\cal A}_2(S_7) \simeq \bigvee_{1\le i\le 160} S~2$$ has the
homotopy type of a wedge of 160 2-spheres. This homotopy equivalence is given in [Kso00, (15.1)]

where it was obtained by purely theoretical methods.
Example

gap> Y:=RegularCWComplex (K) ;
Regular CW-complex of dimension 2

gap> C:=ChainComplex(Y);
Chain complex of length 2 in characteristic O .

gap> C!.dimension(0);

1

gap> C!.dimension(1);
0

gap> C!.dimension(2);
160

1.5 Simple homotopy equivalences

For any regular CW complex Y one can look for a sequence of simple homotopy collapses ¥ ¥} \,
Y2 \(... \(Yv = X with X a smaller, and typically non-regular, CW complex. Such a sequence of
collapses can be recorded using what is now known as a discrete vector field on Y. The sequence can,
for example, be used to produce a chain homotopy equivalence f:C.Y — C.X and its chain homotopy
inverse g:C,.X — C.Y. The function ChainComplex(Y) returns the cellular chain complex C,(X),
wheras the function ChainComplex0fRegularCWComplex (Y) returns the chain complex C.(Y).

For the above Quillen complex ¥ = Aa%(S7) the following commands produce the chain homo-
topy equivalence f:C.Y — C.X and g:C.X — C.Y. The number of generators of C.Y equals the
number of cells of Y in each degree, and this number is listed for each degree.

Example
gap> K:=QuillenComplex (SymmetricGroup(7),2);;
gap> Y:=RegularCWComplex (K) ;;

gap> CY:=ChainComplexOfRegularCWComplex(Y);
Chain complex of length 2 in characteristic O .
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gap> CX:=ChainComplex(Y);
Chain complex of length 2 in characteristic O .

gap> equiv:=ChainComplexEquivalenceOfRegularCWComplex(Y);;
gap> f:=equiv[1];
Chain Map between complexes of length 2 .

gap> g:=equiv[2];
Chain Map between complexes of length 2 .

gap> CY!.dimension(0);
1316
gap> CY!.dimension(1);
5565
gap> CY!.dimension(2);
4410

10

1.6 Cellular simplifications preserving homeomorphism type

For some purposes one might need to simplify the cell structure on a regular CW-complex Y so as to

obtained a homeomorphic CW-complex W with fewer cells.

The following commands load a 4-dimensional simplicial complex Y representing the K3 complex
surface. Its simplicial structure is taken from [SK11] and involves 1704 cells of various dimensions.
The commands then convert the cell structure into that of a homeomorphic regular CW-complex W

involving 774 cells.
Example

gap> Y:=RegularCWComplex (SimplicialK3Surface());
Regular CW-complex of dimension 4

gap> Size(Y);

1704

gap> W:=SimplifiedComplex(Y);
Regular CW-complex of dimension 4

gap> Size (W) ;
774

1.7 Constructing a CW-structure on a knot complement

The following commands construct the complement M = S\ K of the trefoil knot K. This complement

is returned as a 3-manifold M with regular CW -structure involving four 3-cells.
Example

gap> arc:=ArcPresentation(PureCubicalknot(3,1));
[ [ 2’ 5 ], [ 1’ 3 ], [ 2’ 4 ]’ [ 3’ 5 ]! [ 1! 4 ] ]
gap> S:=SphericalKnotComplement (arc) ;
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Regular CW-complex of dimension 3

gap> S!.nrCells(3);
4

The following additional commands then show that M is homotopy equivalent to a reduced
CW-complex Y of dimension 2 involving one 0-cell, two 1-cells and one 2-cell. The fundamen-
tal group of Y is computed and used to calculate the Alexander polynomial of the trefoil knot.

Example

gap> Y:=ContractedComplex(S);
Regular CW-complex of dimension 2

gap> CriticalCells(Y);
(2,11, 01,971, 01,1111, 00,2271
gap> G:=FundamentalGroup(Y);;

gap> AlexanderPolynomial(G) ;

x_172-x_1+1

1.8 Constructing a regular CW-complex by attaching cells

The following example creates the projective plane Y as a regular CW-complex, and tests that it has
the correct integral homology Hy(Y,Z) = Z, H\(Y,Z) = Z, H,(Y,Z) = 0.

Example
gap> attch:=RegularCWComplex_AttachCellDestructive;; #Function for attaching cells

gap> Y:=RegularCWDiscreteSpace(3); #Discrete CW-complex consisting of points {1,2,
Regular CW-complex of dimension O

gap> el:=attch(Y,1,[1,2]);; #Attach 1-cell

gap> e2:=attch(Y,1,[1,2]);; #Attach 1-cell

gap> e3:=attch(Y,1,[1,3]);; #Attach 1-cell

gap> e4:=attch(Y,1,[1,3]);; #Attach 1-cell

gap> eb:=attch(Y,1,[2,3]);; #Attach 1-cell

gap> e6:=attch(Y,1,[2,3]);; #Attach 1-cell

gap> fl:=attch(Y,2,[el,e3,e5]);; #Attach 2-cell
gap> f2:=attch(Y,2,[e2,e4,e5]);; #Attach 2-cell
gap> f3:=attch(Y,2,[e2,e3,e6]);; #Attach 2-cell
gap> f4:=attch(Y,2, [el,e4,e6]);; #Attach 2-cell
gap> Homology(Y,0);

[ 0]

gap> Homology(Y,1);

[ 2]

gap> Homology(Y,2);

[ 1¢

The following example creates a 2-complex K corresponding to the group presentation
G=(x,yz:xx y l=1yy lz =1Lz k7 =1).
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The complex is shown to have the correct fundamental group and homology (since it is the

2-skeleton of the 3-torus S' x ' x S).

Example

gap> S1:=RegularCWSphere(1);;

gap> W:=WedgeSum(S1,S1,S51);;

gap> F:=FundamentalGroupWithPathReps(W);; x:=F.1;;y:=F.2;;2z:=F.3;;

gap> K:=RegularCWComplexWithAttachedRelatorCells(W,F,Comm(x,y),Comm(y,z) ,Comn(x,z)
Regular CW-complex of dimension 2

gap> G:=FundamentalGroup (K) ;

<fp group on the generators [ f1, f2, £3 ]>

gap> Relators0fFpGroup(G) ;

[ £27-1xf1xf2xf1~-1, f1~-1*xf3*xf1xf3~-1, 2 -1*f3*xf2*xf3~-1 ]
gap> Homology(XK,1);

[0, 0,01

gap> Homology(K,2);

[0, 0, 01

1.9 Constructing a regular CW-complex from its face lattice

The following example creats a 2-dimensional annulus A as a regular CW-complex, and testing that
it has the correct integral homology Hy(A,Z) =7, H\(A,Z) = Z, Hy(A,Z) = 0.

Example
gap> FL:=[];; #The face lattice

gap> FL[1]:=[[1,0],[1,0],[1,0],[1,01];;
gap> FL[2]:=[[2,1,2],[2,3,4],[2,1,4],[2,2,3],[2,1,4],[2,2,3]1];;
gap> FL[3]:=[[4,1,2,3,4],[4,1,2,5,61];;

gap> FL[4]:=[];;

gap> A:=RegularCWComplex (FL);

Regular CW-complex of dimension 2

gap> Homology(A,0);
[ 0]
gap> Homology(A,1);
[ 0]
gap> Homology(A,2);
[ ]

Next we construct the direct product Y =A XA X A X A X A of five copies of the annulus. This is a

10-dimensional CW complex involving 248832 cells. It will be homotopy equivalent ¥ ~ X to a CW
complex X involving fewer cells. The CW complex X may be non-regular. We compute the cochain
complex D, = Homy(C,(X),Z) from which the cohomology groups

H(Y,Z) =17,

H\(Y,Z) =77,
H>(Y,Z) =7"°,
H3(Y,Z) =79,
HYY,7) =77,
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H(Y,7) =7,

HS(Y,Z) =0

are obtained.

Example

13

gap> Y:=DirectProduct(A,A,A,A,A);
Regular CW-complex of dimension 10

gap> Size(Y);

248832

gap> C:=ChainComplex(Y);

Chain complex of length 10 in characteristic O .

gap> D:=HomToIntegers(C);
Cochain complex of length 10 in characteristic O .

gap> Cohomology(D,0);

[ 0]

gap> Cohomology(D,1);

[0, 0,0,0,0]

gap> Cohomology(D,2);

(o, 0,0,0,0,0,0,0,0,01]1
gap> Cohomology(D,3);

(o, o0,0,0,0,0,0,0,0,0]1
gap> Cohomology(D,4);

[0, 0,0,0,0]

gap> Cohomology(D,5);

[ 0]

gap> Cohomology(D,6);

[ 1]

1.10 Cup products

STRATEGY 1: USE GEOMETRIC GROUP THEORY IN LOW DIMENSIONS.

Continuing with the previous example, we consider the first and fifth generators g}, g; €
H'(Y,Z) = 7’ and establish that their cup product g} Ugl = —g2 € H*(Y,Z) = Z'? is equal to minus

the seventh generator of H>(Y,Z). We also verify that g; Ugl=—glu g;.
Example

gap> cupll:=CupProduct (FundamentalGroup(Y));
function( a, b ) ... end

gap> cup11([1,0,0,0,0],[0,0,0,0,11);
[O’ 0, O: O’ O, O: _13 0, O:O]

gap> cupl1([0,0,0,0,1],[1,0,0,0,01);
(o, 0,0,0,0,0,1,0,0,01




A newer HAP tutorial 14

This computation of low-dimensional cup products is achieved using group-theoretic methods to
approximate the diagonal map A:Y — Y x Y in dimensions < 2. In order to construct cup products in
higher degrees HAP invokes three further strategies.

STRATEGY 2: IMPLEMENT THE ALEXANDER-WHITNEY MAP FOR SIMPLICIAL COMPLEXES.

For simplicial complexes the cup product is implemented using the standard formula for the
Alexander- Whitney chain map, together with homotopy equivalences to improve efficiency.

As a first example, the following commands construct simplicial complexes K = (S! x S")#(S! x
S'") and L = (S' x S!') vS!' vS! and establish that they have the same cohomology groups. It is then
shown that the cup products Ux: H*(K,7Z) x H*(K,Z) — H*(K,Z) and U: H*(L,Z) x H*(L,Z) —
H*(L,7) are antisymmetric bilinear forms of different ranks; hence K and L have different homotopy

types.
Example

gap> K:=ClosedSurface(2);
Simplicial complex of dimension 2.

gap> L:=WedgeSum(WedgeSum(ClosedSurface(1),Sphere(1)),Sphere(1));
Simplicial complex of dimension 2.

gap> Cohomology (K,0) ;Cohomology(L,0) ;
[0]

[ 0]

gap> Cohomology (K, 1) ;Cohomology(L,1);
[0, 0, 0, 01

[0, 0, 0,01

gap> Cohomology (K,2) ;Cohomology(L,2) ;

[ 0]

[ 0]

gap> gens:=[[1,0,0,0],[0,1,0,01,[0,0,1,0],[0,0,0,111;;
gap> cupK:=CupProduct (K) ;;

gap> cupL:=CupProduct (L) ;;

gap> A:=NulllMat(4,4);;B:=NullMat(4,4);;
gap> for i in [1..4] do

> for j in [1..4] do

> A[i][j]:=cupK(1,1,gens[i],gens[j]1) [1];
> B[i] [j]:=cupL(1l,1,gens[i],gens[j]1) [1];

> od;od;

gap> Display(A);

c o, o, o0, 11,
L o, o, 1, 01,
[ o, -1, o0, 01,
[ -1, 0, 0, 01 1]

gap> Display(B);

tf o, 1, o, o017,
[ -1, o, o0, 01,
[ o, o, o0, 01,
[ o, o0, 0, 011

gap> Rank(A);

4

gap> Rank(B);
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As a second example of the computation of cups products, the following commands construct
the connected sums V = M#M and W = M#M where M is the K3 complex surface which is stored
as a pure simplicial complex of dimension 4 and where M denotes the opposite orientation on M.
The simplicial structure on the K3 surface is taken from [SK11]. The commands then show that
H?*(V,Z) = H*(W,Z) = Z** and H*(V,Z) = H*(W,Z) = Z. The final commands compute the matrix
AV = (xUy) as x,y range over a generating set for H>(V,Z) and the corresponding matrix AW for W.
These two matrices are seen to have a different number of positive eigenvalues from which we can
conclude that V' is not homotopy equivalent to W.

Example

gap> M:=SimplicialK3Surface();;

gap> V:=ConnectedSum(M,M,+1);

Simplicial complex of dimension 4.

gap> W:=ConnectedSum(M,M,-1);

Simplicial complex of dimension 4.

gap> Cohomology(V,2);

(o o,o0,o0,o0,0,0,o000,o000,o000,o000,o000,00,0,
o0, o, 0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O]

gap> Cohomology(W,2) ;

too,o0,o0,o0,o0,o0,o0,o0,o0,o0o0o0000,0,0,0,000,0,n0,.0,
o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O

gap> Cohomology(V,4);

[ 0]

gap> Cohomology(W,4) ;

[ 0]

gap> cupV:=CupProduct (V) ;;

gap> cupW:=CupProduct (W) ;;

gap> AV:=NullMat (44,44);;

gap> AW:=NullMat(44,44);;

gap> gens:=IdentityMat(44);;

gap> for i in [1..44] do

> for j in [1..44] do

> AV[i] [j]:=cupV(2,2,gens[i],gens[j]) [1];

> AW[i] [j]:=cupW(2,2,gens[i],gens[j]) [1];

> od;od;

gap> SignatureOfSymmetricMatrix (AV);

rec( determinant := 1, negative_eigenvalues := 22, positive_eigenvalues := 22,
zero_eigenvalues := 0 )

gap> Signature0fSymmetricMatrix (AW) ;

rec( determinant := 1, negative_eigenvalues := 6, positive_eigenvalues := 38,
zero_eigenvalues := 0 )

A cubical cubical version of the Alexander-Whitney formula, due to J.-P. Serre, could be used for
computing the cohomology ring of a regular CW-complex whose cells all have a cubical combi-
natorial face lattice. This has not been implemented in HAP. However, the following more general
approach has been implemented.

STRATEGY 3: IMPLEMENT A CELLULAR APPROXIMATION TO THE DIAGONAL MAP ON AN
ARBITRARY FINITE REGULAR CW-COMPLEX.

The following example calculates the cup product H*(W,Z) x H>(W,Z) — H*(W,Z) for the
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4-dimensional orientable manifold W = M x M where M is the closed surface of genus 2. The mani-
fold W is stored as a regular CW-complex.

Example
gap> M:=RegularCWComplex(ClosedSurface(2));;
gap> W:=DirectProduct(M,M);

Regular CW-complex of dimension 4

gap> Size (W) ;

5776

gap> W:=SimplifiedComplex (W) ;;
gap> Size(W);

1024

gap> Homology(W,2);
too,o0,o0,o0,o0,0o0,0,0,0,0,0,0,0,0,0,0,0]
gap> Homology(W,4) ;

[ 0]

gap> cup:=CupProduct (W) ;;

gap> SecondCohomologtGens:=IdentityMat(18);;

gap> A:=NullMat(18,18);;

gap> for i in [1..18] do

> for j in [1..18] do

> A[i] [j]:=cup(2,2,SecondCohomologtGens[i] ,SecondCohomologtGens[j]) [1];
> od;od;

gap> Display(A);

ttc o, -1, 0, 0, 0, 0, 3, -2, 0, 0, 0, 1, -1,
[ -1, -10, 1, 2, -2, 1, 6, -1, 0, -3, 4, -1, -1,
[ 0, 1, -2, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0,
[ 0, 2, 1, -2, 1, 0, 0, -1, 0, 1, 0, 0, 0,
[ 0, -2, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0,
[ 0, 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0,
[ 3, 6, 0, 0, 1, 0, -4, 0, -1, 2, 4, -5, 2,
[ -2, -1, 0, -1, -1, 1, 0, 4, -2, 0, 0, 3, -1,
[ 0, 0, 1, 0, 0, -1, -1, -2, 4, -3, -10, 1, 0,
[ 0, -3, 0, 1, 0, 1, 2, 0, -3, 2, 3, 0, 0,
[ 0, 4, -1, 0, -1, 0, 4, 0, -10, 3, 18, 1, 0,
[ 1, -1, 1, 0, 0, 0, -5, 3, 1, 0, 1, 0, 0,
[ -1, -1, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0,
[ 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0,
[ 0, 4, 1, -1, 0, 1, 1, -1, -3, 1, 0, -2, 1,
[ 1, -2, -1, 2, -1, -1, 0, 0, 3, -3, 4, -1, 0,
[ 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 0, -1, 0,
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

gap> SignatureOfSymmetricMatrix(A);

rec( determinant := -1, negative_eigenvalues := 9, positive_eigenvalues := 9,

zero_eigenvalues := 0 )

The matrix A representing the cup product H*(W,Z) x H*(W,Z) — H*(W,Z) is shown to have 9
positive eigenvalues, 9 negative eigenvalues, and no zero eigenvalue.

| |
v e e v v w

-

-

v v v v

-

OFRr P OO0 O0OO0OO0OO0OKFr Rk, OOOOROo

-

-

[
R R, P, OFR P DO
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STRATEGY 4: GUESS AND VERIFY A CELLULAR APPROXIMATION TO THE DIAGONAL MAP.

Many naturally occuring cell structures are neither simplicial nor cubical. For a general regular
CW -complex we can attempt to construct a cellular inclusion Y < Y x Y with {(y,y) : yeY} CY
and with projection p:Y — Y that induces isomorphisms on integral homology. The function
DiagonalApproximation(Y) constructs a candidate inclusion, but the projection p:Y —» Y needs
to be tested for homology equivalence. If the candidate inclusion passes this test then the function
CupProduct0fRegularCWComplex_alt (Y), involving the candidate space, can be used for cup prod-
ucts. (I think the test is passed for all regular CW -complexes that are subcomplexes of some Euclidean
space with all cells convex polytopes -- but a proof needs to be written down!)

The following example calculates g% U g% # (0 where Y =T x T is the direct product of two copies
of a simplicial torus 7', and where g} denotes the k-th generator in some basis of H"(Y,Z). The direct
product Y is a CW-complex which is not a simplicial complex.

Example
gap> K:=RegularCWComplex(ClosedSurface(1));;
gap> Y:=DirectProduct (K,K);;

gap> cup:=CupProduct0fRegularCWComplex_alt(Y);;
gap> cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,01);

[ 5]

gap> D:=DiagonalApproximation(Y);;
gap> p:=D!.projection;
Map of regular CW-complexes

gap> P:=ChainMap(p);
Chain Map between complexes of length 4 .

gap> IsIsomorphismOfAbelianFpGroups (Homology(P,0));
true
gap> IsIsomorphismOfAbelianFpGroups (Homology(P,2));
true
gap> IsIsomorphismOfAbelianFpGroups(Homology(P,3));
true
gap> IsIsomorphism0OfAbelianFpGroups (Homology(P,4));
true

Of course, either of Strategies 2 or 3 could also be used for this example. To use the Alexan-
der-Whitney formula of Strategy 2 we would need to give the direct product Y =T x T a simplicial
structure. This could be obtained using the function DirectProduct (T, T). The details are as follows.
(The result is consistent with the preceding computation since the choice of a basis for cohomology

groups is far from unique.)
Example

gap> K:=ClosedSurface(1);;
gap> KK:=DirectProduct (K,K) ;
Simplicial complex of dimension 4.

gap> cup:=CupProduct (KK) ; ;
gap> cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);
[ 0]
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1.11 Intersection forms of 4-manifolds

The cup product gives rise to the intersection form of a connected, closed, orientable 4-manifold Y is
a symmetric bilinear form

qY:H?*(Y,7)/Torsion x H*(Y,Z)/Torsion —s 7

which we represent as a symmetric matrix.

The following example constructs the direct product L = S? x 82 of two 2-spheres, the connected
sum M = CP*#CP? of the complex projective plane CP? and its oppositely oriented version CP2, and
the connected sum N = CP*#CP2. The manifolds L, M and N are each shown to have a CW -structure
involving one 0-cell, two 1-cells and one 2-cell. They are thus simply connected and have identical
cohomology.

Example
gap> S:=Sphere(2);;

gap> S:=RegularCWComplex(S);;

gap> L:=DirectProduct(S,S);

Regular CW-complex of dimension 4

gap> M:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),-1);
Simplicial complex of dimension 4.

gap> N:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),+1);
Simplicial complex of dimension 4.

gap> CriticalCells(L);

(4,11, 02,131, [2,561, [0, 161]]
gap> CriticalCells(RegularCWComplex(M)) ;
(4,11, [2,1091, [2, 1191, [0, 81]]1]
gap> CriticalCells(RegularCWComplex(N)) ;
(4,11, 02,1191, [ 2, 1491, [0, 121 ]

John Milnor showed (as a corollary to a theorem of J. H. C. Whitehead) that the homotopy type of a
simply connected 4-manifold is determined by its quadratic form. More precisely, a form is said to
be of type I (properly primitive) if some diagonal entry of its matrix is odd. If every diagonal entry is
even, then the form is of type II (improperly primitive). The index of a form is defined as the number
of positive diagonal entries minus the number of negative ones, after the matrix has been diagonalized
over the real numbers.

THEOREM. (Milnor [Mil58]) The oriented homotopy type of a simply connected, closed, ori-
entable 4-manifold is determined by its second Betti number and the index and type of its intersetion
form; except possibly in the case of a manifold with definite quadratic form of rank r > 9.

The following commands compute matrices representing the intersection forms gL, gM, gN.
Example

gap> qL:=IntersectionForm(L);;
gap> gM:=IntersectionForm(M);;
gap> gN:=IntersectionForm(N);;
gap> Display(qLl);
trt -2, 11,

[ 1, 011
gap> Display(qM);
[rc 1, o1,
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[ o, 111
gap> Display(qN);
(L 1, o1,

[ o0, -111

Since gL is of type II, whereas gM and gN are of type I we see that the oriented homotopy type of L
is distinct to that of M and that of N. Since gM has index 2 and gN has index 0 we see that that M and
N also have distinct oriented homotopy types.

1.12 Cohomology Rings

The cup product gives the cohomology H*(X,R) of a space X with coefficients in a ring R the struc-
ture of a graded commutitive ring. The function CohomologyRing (Y, p) returns the cohomology as
an algebra for ¥ a simplicial complex and R = Z, the field of p elements. For more general reg-
ular CW-complexes or R = Z the cohomology ring structure can be determined using the function
CupProduct (Y).

The folowing commands compute the mod 2 cohomology ring H*(W,Z,) of the above wedge sum
W =MV N of a 2-dimensional orientable simplicial surface of genus 2 and the K3 complex simplicial

surface (of real dimension 4).
Example

gap> M:=ClosedSurface(2);;

gap> N:=SimplicialK3Surface();;
gap> W:=WedgeSum(M,N);;

gap> A:=CohomologyRing(W,2);
<algebra of dimension 29 over GF(2)>
gap> x:=Basis(A) [25];

v.25

gap> y:=Basis(A) [27];

v.27

gap> x*y;

v.29

The functions CupProduct and IntersectionForm can be used to determine integral cohomol-
ogy rings. For example, the integral cohomology ring of an arbitrary closed surface was calculated
in [GM15, Theorem 3.5]. For any given surface M this result can be recalculated using the intersec-
tion form. For instance, for an orientable surface of genus g it is well-known that H'(M,Z) = 7%,
H?*(M,7) = 7. The ring structure multiplication is thus given by the matrix of the intersection form.

For say g = 3 the ring multiplication is given, with respect to some cohomology basis, in the following.
Example

gap> M:=ClosedSurface(3);;
gap> Display(IntersectionForm(M)) ;
[ [ O: O: 1: _15 _15 O ]:

( o, o o0, 1, 1, 01,
( -1, o, o0, 1, 1, -11,
( 1, -1, -1, o0, o0, 11,
( 1, -1, -1, 0, 0, 01,
( o, o 1, -1, 0, 011




A newer HAP tutorial 20

By changing the basis B for H'(M,7Z) we obtain the following simpler matrix representing multipli-
cation in H*(M,Z).
Example

gap> B:=[ 1,

1
» 0,
1
1

>

O O~
O O -

0
1,
, 01,
1, 01,
, 01,

11

>

[0, 1
[1,0
Lo, O,
[0, 0
[0, 0 ,
[o,o0,1, 1,0,
ap> Display(IntersectionForm(M
[ 0, 1, 0, 0, 0,

[ -1, O
[ o, O
[ o, o,
[ o0, O
[ © 0

)

O O

]

o -

[ W oy N Y Y B N
-

)

—0Q V V V V VvV

-

B B

-

B B

B B

-

B B

-

= O O O O
O OO+~ O
O O O O O«

—

’ B

1.13 Bockstein homomorphism

The following example evaluates the Bockstein homomorphism B,: H*(X,Z,) — H**'(X,Z,) on an
additive basis for X = X!%(RP? x RP?) the 100-fold suspension of the direct product of two projective

planes.

Example
gap> P:=SimplifiedComplex(RegularCWComplex(ClosedSurface(-1)));
Regular CW-complex of dimension 2

gap> PP:=DirectProduct(P,P);;

gap> SPP:=Suspension(PP,100);

Regular CW-complex of dimension 104

gap> A:=CohomologyRing(SPP,2) ;

<algebra of dimension 9 over GF(2)>

gap> List(Basis(A) ,x->Bockstein(A,x));

[ Oxv.1, v.4, v.6, Oxv.1, v.7+v.8, O*v.1, v.9, v.9, O*xv.1 ]

If only the Bockstein homomorphism is required, and not the cohomology ring structure, then the
Bockstein could also be computedirectly from a chain complex. The following computes the Bock-
stein B2: H2(Y,Z,) — H3(Y,Z5) for the direct product ¥ = K x K x K x K of four copies of the Klein
bottle represented as a regular CW -complex with 331776 cells. The order of the kernel and image of

B> are computed.
Example

gap> K:=ClosedSurface(-2);;

gap> K:=SimplifiedComplex(RegularCWComplex(K));;
gap> KKKK:=DirectProduct (K,K,K,K) ;

Regular CW-complex of dimension 8

gap> Size (KKKK) ;

331776

gap> C:=ChainComplex (KKKK) ;;

gap> bk:=Bockstein(C,2,2);;
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gap> Order (Kernel(bk));
1024

gap> Order (Image (bk)) ;
262144

1.14 Diagonal maps on associahedra and other polytopes

By a diagonal approximation on a regular CW-complex X we mean any cellular map A: X — X x X
that is homotopic to the diagonal map X — X x X,x — (x,x) and equal to the diagonal map when
restricted to the 0-skeleton. Theoretical formulae for diagonal maps on a polytope X can have inter-
esting combinatorial aspects. To illustrate this let us consider, for n = 3, the n-dimensional polytope
"2 known as the associahedron. The following commands display the 1-skeleton of %7,

Example
gap> n:=3;;Y:=RegularCWAssociahedron(n+2);;
gap> Display(GraphOfRegularCWComplex(Y));

The induced chain map C,(#"2) — C,(#"*? x #"2) sends the unique free generator e/ of
Cu(£7F2) to a sum A(e) of a number of distinct free generators of C,(# ™2 x J#"2). Let |A(e})|
denote the number of free generators. For n = 3 the following commands show that |A(e})| = 22 with
each free generator occurring with coefficient +-1.
Example
gap> n:=3;;Y:=RegularCWAssociahedron(n+2);;
gap> D:=DiagonalChainMap(Y);;Filtered(D! .mapping([1],n),x->x<>0);

[+, 1, -1, -1, 1,1, -1, -1, 1, -1, 1,1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1]

Repeating this example for 0 < n < 6 yields the sequence |A(e})| : 1,2,6,22,91,408,1938,--- . The
On-line Encyclopedia of Integer Sequences explains that this is the beginning of the sequence given
by the number of canopy intervals in the Tamari lattices.

Repeating the same experiment for the permutahedron, using the command
RegularCWPermutahedron(n), yields the sequence |A(e})| : 1,2,8,50,432,4802,---.  The
On-line Encyclopedia of Integer Sequences explains that this is the beginning of the sequence given
by the number of spanning trees in the graph K, /e, which results from contracting an edge e in the
complete graph K, on n vertices.

Repeating the experiment for the cube, using the command RegularCWCube (n), yields the se-
quence |A(ef)|:1,2,4,8,16,32,---.

Repeating the experiment for the simplex, using the command RegularCWSimplex (n), yields the
sequence |A(ef)|:1,2,3,4,5,6,---.

1.15 CW maps and induced homomorphisms

A strictly cellular map f:X — Y of regular CW-complexes is a cellular map for which the image of
any cell is a cell (of possibly lower dimension). Inclusions of CW-subcomplexes, and projections
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from a direct product to a factor, are examples of such maps. Strictly cellular maps can be represented
in HAP, and their induced homomorphisms on (co)homology and on fundamental groups can be
computed.

The following example begins by visualizing the trefoil knot k € R>. It then constructs a
regular CW structure on the complement ¥ = D3\ Nbhd(k) of a small tubular open neighbour-
hood of the knot lying inside a large closed ball D3. The boundary of this tubular neighbour-
hood is a 2-dimensional CW-complex B homeomorphic to a torus S' x S! with fundamental group
7 (B) =< a,b : aba~'b~' =1 >. The inclusion map f:B < Y is constructed. Then a presentation
m(Y) =<x,y|xy~'x~'yx~'y~! > and the induced homomorphism $$\pi_1(B)\rightarrow \pi_1(Y),
a\mapsto y~{-1}xy~2xy~{-1}, b\mapsto y $$ are computed. This induced homomorphism is an
example of a peripheral system and is known to contain sufficient information to characterize the knot
up to ambient isotopy.

Finally, it is verified that the induced homology homomorphism H,(B,Z) — H,(Y,Z) is an iso-
momorphism.

Example
gap> K:=PureCubicalKnot(3,1);;
gap> ViewPureCubicalKnot (K);;

Example

gap> K:=PureCubicalKnot(3,1);;
gap> f:=KnotComplementWithBoundary(ArcPresentation(K));
Map of regular CW-complexes

gap> G:=FundamentalGroup(Target(f));

<fp group of size infinity on the generators [ f1, f2 1>
gap> Relators0fFpGroup(G) ;

[ f1%f27-1%f1~-1%f2%Ff1~-1%f2"-1 ]

gap> F:=FundamentalGroup(f);
[ £1, £2 1 -> [ £27-1*f1x£2"2xf1*f2~-1, f1 ]
gap> phi:=ChainMap(f);

Chain Map between complexes of length 2 .

gap> H:=Homology(phi,2);
[gl]l ->T[gll]l

1.16 Constructing a simplicial complex from a regular CW -complex

The following example constructs a 3-dimensional pure regular CW-complex K whose 3-cells are
permutahedra. It then constructs the simplicial complex B by taking barycentric subdivision. It then
constructes a smaller, homotopy equivalent, simplicial complex N by taking the nerve of the cover of
K by the closures of its 3-cells.

Example
gap> K:=RegularCWComplex (PureComplexComplement (PurePermutahedralknot(3,1)));
Regular CW-complex of dimension 3
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gap> Size(K);

77923

gap> B:=BarycentricSubdivision(K) ;
Simplicial complex of dimension 3.

gap> Size(B);

1622517

gap> N:=Nerve(K);

Simplicial complex of dimension 3.

gap> Size(N);
48745

1.17 Some limitations to representing spaces as regular CW complexes

By a classifying space for a group G we mean a path-connected space BG with fundamental group
71 (BG) = G isomorphic to G and with higher homotopy groups 7, (BG) = 0 trivial for all n > 2. The
homology of the group G can be defined to be the homology of BG: H,(G,Z) = H,(BG,Z).

In principle BG can always be constructed as a regular CW-complex. For instance, the following
extremely slow commands construct the 5-skeleton Y of a regular CW-classifying space Y = BG for
the dihedral group of order 16 and use it to calculate H,(G,Z) = Zy ® Zy, Hy(G,Z) = Z,, H3(G,Z) =
Zp ® 7y ®ZLg, Hy(G,Z) = Zy ® Z,. The final command shows that the constructed space Y3 in this
example is a 5-dimensional regular CW-complex with a total of 15289 cells.

Example
gap> Y:=ClassifyingSpaceFiniteGroup(DihedralGroup(16),5);
Regular CW-complex of dimension 5

gap> Homology(Y,1);

[2, 2]

gap> Homology(Y,2);

[ 2]

gap> Homology(Y,3);

[2, 2, 8]

gap> Homology(Y,4);

[2, 2]

gap> Size(Y);

15289

The n-skeleton of a regular CW -classifying space of a finite group necessarily involves a large number
of cells. For the group G = C; of order two a classifying space can be take to be real projective space
BG = RP” with n-skeleton BG" = RP". To realize BG" = RP" as a simplicial complex it is known
that one needs at least 6 vertices for n = 2, at least 11 vertices for n = 3 and at least 16 vertices
for n = 4. One can do a bit better by allowing BG to be a regular CW-complex. For instance, the
following creates RP* as a regular CW-complex with 5 vertices. This construction of RP* involves a
total of 121 cells. A minimal triangulation of RP* would require 991 simplices.



A newer HAP tutorial 24

Example
gap> Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),4);
Regular CW-complex of dimension 4
gap> Y!.nrCells(0);

5
gap> Y!.nrCells(1);
20
gap> Y!.nrCells(2);
40
gap> Y!.nrCells(3);
40
gap> Y!.nrCells(4);
16

The space RP" can be given the structure of a regular CW-complex with n+ 1 vertices. Kuehnel has
described a triangulation of RP" with 2"*! — 1 vertices.

The above examples suggest that it is inefficient/impractical to attempt to compute the n-th ho-
mology of a group G by first constructing a regular CW-complex corresponding for the n+ 1 of a
classifying space BG, even for quite small groups G, since such spaces seem to require a large number
of cells in each dimension. On the other hand, by dropping the requirement that BG must be regular
we can obtain much smaller CW-complexes. The following example constructs RP? as a regular
CW-complex and then shows that it can be given a non-regular CW -structure with just one cell in
each dimension.

Example

gap> Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),9);

Regular CW-complex of dimension 9

gap> Size(Y);

29524

gap> CriticalCells(Y);

(09,11, (08,1241, [ 7, 121561, [ 6, 1246 ], [ 5, 487 1, [ 4, 254 1],
(33,1171, [ 2,51, [1,91]1,[0,101]]

It is of course well-known that RP” admits a theoretically described CW -structure with just one cell
in each dimension. The question is: how best to represent this on a computer?

1.18 Equivariant CW complexes

As just explained, the representations of spaces as simplicial complexes and regular CW complexes
have their limitations. One limitation is that the number of cells needed to describe a space can be
unnecessarily large. A minimal simplicial complex structure for the torus has 7 vertices, 21 edges and
14 triangles. A minimal regular CW -complex structure for the torus has 4 vertices, 8 edges and 4 cells
of dimension 2. By using simplicial sets (which are like simplicial complexes except that they allow
the freedom to attach simplicial cells by gluing their boundary non-homeomorphically) one obtains
a minimal triangulation of the torus involving 1 vertex, 3 edges and 2 cells of dimension 2. By using
non-regular CW-complexes one obtains a minimal cell structure involving 1 vertex, 2 edges and 1 cell
of dimension 2. Minimal cell structures (in the four different categories) for the torus are illustrated as
follows.
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A second limitation to our representations of simplicial and regular CW-complexes is that they
apply only to structures with finitely many cells. They do no apply, for instance, to the simplicial
complex structure on the real line R in which each each integer n is a vertex and each interval [n,n+ 1]
is an edge.

Simplicial sets provide one approach to the efficient combinatorial representation of certain spaces.
So too do cubical sets (the analogues of simplicial sets in which each cell has the combinatorics of an
n-cube rather than an n-simplex). Neither of these two approaches has been implemented in HAP.

Simplicial sets endowed with the action of a (possibly infinite) group G provide for an efficient
representation of (possibly infinite) cell structures on a wider class of spaces. Such a structure can
be made precise and is known as a simplicial group. Some functionality for simplicial groups is
implemented in HAP and described in Chapter 12.

A regular CW-complex endowed with the action of a (possibly infinite) group G is an alternative
approach to the efficient combinatorial representation of (possibly infinite) cell structures on spaces.
Much of HAP is focused on this approach. As a first example of the idea, the following commands
construct the infinite regular CW-complex ¥ = T arising as the universal cover of the torus 7 =S! x S!
where T is given the above minimal non-regular CW structure involving 1 vertex, 2 edges, and 1 cell
of dimension 2. The homology H,(T,Z) is computed and the fundamental group of the torus T is

recovered.
Example

gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;;
gap> G:=F/[ x*xy*xx~-1*xy~-1 1;;

gap> Y:=EquivariantTwoComplex(G) ;
Equivariant CW-complex of dimension 2

gap> C:=ChainComplex0fQuotient (Y);
Chain complex of length 2 in characteristic 0 .

gap> Homology(C,0);

[ 0]

gap> Homology(C,1);

(0,01

gap> Homology(C,2);

[ 0]

gap> FundamentalGroupOfQuotient (Y);

<fp group of size infinity on the generators [ f1, f2 ]>

As a second example, the following comands load group number 9 in the library of 3-dimensional
crystallographic groups. They verify that G acts freely on R? (i.e. G is a Bieberbach group) and
then construct a G-equivariant CW-complex ¥ = R? corresponding to the tessellation of R? by a
fundamental domain for G. Finally, the cohomology H, (M,Z) of the 3-dimensional closed manifold
M =R?/G is computed. The manifold M is seen to be non-orientable (since it’s top-dimensional
homology is trivial) and has a non-regular CW structure with 1 vertex, 3 edges, 3 cells of dimension

2, and 1 cell of dimension 3. (This example uses Polymake software.)
Example

gap> G:=SpaceGroup(3,9);;

gap> IsAlmostBieberbachGroup (Image (IsomorphismPcpGroup(G))) ;
true

gap> Y:=EquivariantEuclideanSpace (G, [0,0,0]);

Equivariant CW-complex of dimension 3
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gap> Y!.dimension(0);

1

gap> Y!.dimension(1);

3

gap> Y!.dimension(2);

3

gap> Y!.dimension(3);

1

gap> C:=ChainComplex0fQuotient (Y);

Chain complex of length 3 in characteristic O .

gap> Homology(C,0);
[ 0]

gap> Homology(C,1);
[0, 0]

gap> Homology(C,2);
[ 2, 0]

gap> Homology(C,3);
L 1]

The fundamental domain for the action of G in the above example is constructed to be the Dirich-
let- Voronoi region in R? whose points are closer to the origin v = (0,0,0) than to any other point v8

in the orbit of the origin under the action of G. This fundamental domain can be visualized as follows.
Example
gap> F:=FundamentalDomainStandardSpaceGroup([0,0,0],G);
<polymake object>

gap> Polymake (F,"VISUAL");

Other fundamental domains for the same group action can be obtained by choosing some other
starting vector v. For example:
Example
gap> F:=FundamentalDomainStandardSpaceGroup([1/2,1/3,1/5],G);;
gap> Polymake (F,"VISUAL") ;

gap> F:=FundamentalDomainStandardSpaceGroup([1/7,1/2,1/2],G);
gap> Polymake (F,"VISUAL");

1.19 Orbifolds and classifying spaces

If a discrete group G acts on Euclidean space or hyperbolic space with finite stabilizer groups then we
say that the quotient space obtained by killing the action of G an an orbifold. If the stabilizer groups
are all trivial then the quotient is of course a manifold.

An orbifold is represented as a G-equivariant regular CW-complex together with the stabilizer
group for a representative of each orbit of cells and its subgroup consisting of those group elements
that preserve the cell orientation. HAP stores orbifolds using the data type of non-free resolution and
uses them mainly as a first step in constructing free ZG-resolutions of Z.
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The following commands use an 8-dimensional equivariant deformation retract of a
GL;(Zl[i])-orbifold structure on hyperbolic space to compute Hs(GL3(Z[i],Z) = Z5 ® Z3. (The defor-

mation retract is stored in a library and was supplied by Mathieu Dutour Sikiric.)
Example
gap> Orbifold:=ContractibleGcomplex ("PGL(3,Z[i])");
Non-free resolution in characteristic 0 for matrix group .
No contracting homotopy available.

gap> R:=FreeGResolution(Orbifold,6);
Resolution of length 5 in characteristic O for matrix group .
No contracting homotopy available.

gap> Homology(TensorWithIntegers(R),5);
[2,2,2,2,2,4,4]

The next example computes an orbifold structure on R*, and then the first 12 degrees of a free resolu-
tion/classifying space, for the second 4-dimensional crystallographic group G in the library of crystal-
lographic groups. The resolution is shown to be periodic of period 2 in degrees > 5. The cohomology
is seen to have 11 ring generators in degree 2 and no further ring generators. The cohomology groups
are: $$H"n(G,\mathbb Z) =\left( \begin{array}{11} 0, & {\rm odd~} n\ge 1\\ \mathbb Z_2-5
\oplus \mathbb Z~6, & n=2\\ \mathbb Z_2~{15}\oplus \mathbb Z, & n=4\\ \mathbb Z_2~{16},

& {\rm even~} n \ge 6 .\\ \end{array}\right.$$
Example

gap> G:=SpaceGroup(4,2);;

gap> R:=ResolutionCubicalCrystGroup(G,12);

Resolution of length 12 in characteristic O for <matrix group with
5 generators> .

gap> R!.dimension(5);

16

gap> R!.dimension(7);

16

gap> List([1..16],k->R!.boundary(5,k)=R! .boundary(7,k));

[ true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true ]

gap> C:=HomToIntegers(R);
Cochain complex of length 12 in characteristic O .

gap> Cohomology(C,0);

[ 0]

gap> Cohomology(C,1);

[ ]

gap> Cohomology(C,2);
[2,2,2,2,2,0,0,0,0,0,0]1
gap> Cohomology(C,3);

[ 1]

gap> Cohomology(C,4);
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0]1
gap> Cohomology(C,5);

[ 1]
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gap> Cohomology(C,6) ;

(2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
gap> Cohomology(C,7);

[ 1]

gap> IntegralRingGenerators(R,1);

]

gap> IntegralRingGenerators(R,2

(ci1 0, 0, 0, 0, 0, O,

[0, 0,1,0,0
0, 0, 0, 0, 1,
0, 0, 0, 0, O,
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0
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gap> IntegralRingGenerators(R,3
[ 1]

gap> IntegralRingGenerators(R,4);
L]

gap> IntegralRingGenerators(R,5);
]

gap> IntegralRingGenerators(R,6);
L1

gap> IntegralRingGenerators(R,7);
(I

gap> IntegralRingGenerators(R,8);
[ 1]

gap> IntegralRingGenerators(R,9);
[ 1]

gap> IntegralRingGenerators(R,10);
(I

> B

-
-
-
-
.
-
-
-

= O O O O O
[ T Wy [ S T |

> B

B

A group G with a finite index torsion free nilpotent subgroup admits a resolution which is peri-
odic in sufficiently high degrees if and only if all of its finite index subgroups admit periodic resolu-
tions. The following commands identify the 99 3-dimensional space groups (respectively, the 1191
4-dimensional space groups) that admit a resolution which is periodic in degrees > 3 (respectively, in
degrees > 4).

Example

gap> L3:=Filtered([1..219],k->IsPeriodicSpaceGroup(SpaceGroup(3,k)));

(1,2, 3, 4, 5,6, 7,8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 24, 26, 27, 28,
29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 43, 45, 46, 52, 54, 55, 56, 58,
61, 62, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 87, 89, 92, 98, 101, 102,
107, 111, 119, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 157, 159, 161, 162, 163, 164, 165, 166, 168, 171, 172,
174, 175, 176, 178, 180, 186, 189, 192, 196, 198, 209 ]

gap> L4:=Filtered([1..4783],k->IsPeriodicSpaceGroup(SpaceGroup(4,k)));

(1, 2, 3, 4, 5,6, 7,8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25,
26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70,
71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91,




93, 94, 95, 96, 97,
111, 113, 115, 116,
134, 141, 144, 145,
163, 165, 167, 168,
188, 197, 198, 202,
238, 239, 240, 241,
2565, 266, 257, 259,
275, 277, 278, 279,
303, 304, 305, 314,
358, 359, 361, 362,
381, 384, 385, 386,
398, 399, 400, 401,
414, 415, 416, 417,
430, 431, 432, 433,
446, 447, 448, 450,
477, 478, 479, 482,
505, 507, 508, 512,
539, 540, 541, 542,
567, 568, 571, 572,
596, 598, 599, 612,
654, 656, 657, 658,
672, 674, 676, 677,
692, 694, 696, 697,
728, 734, 738, 739,
769, 770, 778, 779,
865, 874, 900, 904,
924, 925, 926, 927,
946, 953, 955, 956, 958,
987, 988, 989, 991, 992,
1024, 1025, 1026, 1162,
1243, 1244, 1246, 1248,
1281, 1283, 1284, 1289,
1329, 1330, 1331, 1332,
1341, 1343, 1345, 1347,
1358, 1359, 1361, 1363,
1378, 1379, 1380, 1381,
1390, 1393, 1395, 1397,
1420, 1421, 1422, 1424,
1443, 1444, 1445, 1449,
1465, 1470, 1472, 1473,
1495, 1501, 1503, 1506,
1532, 1533, 1534, 1537,
1554, 1558, 1565, 1566,
1705, 1713, 1714, 1735,
1747, 1748, 1749, 1750,
1761, 1762, 1763, 1765,
1775, 1778, 1779, 1782,
1797, 1798, 1799, 1800,
1815, 1821, 1822, 1823,
1850, 1851, 1852, 1854,
1870, 1873, 1874, 1877,
1915, 1918, 1920, 1923,

98,

118,
149,
169,
204,
242,
260,
281,
316,
363,
387,
402,
418,
434,
451,
483,
514,
543,
573,
613,
659,
678,
698,
741,
784,
909,
929,

99,
119,
151,
170,
205,
243,
261,
283,
317,
365,
388,
404,
419,
435,
458,
484,
515,
544,
574,
622,
661,
679,
699,
742,
788,
911,
931,
963,
993,

1167,

1250,

1291,

1333,

1348,

1365,

1382,

1399,

1425,

1450,

1477,

1509,

15638,

1568,

1738,

1751,

1767,

1783,

1801,

1828,

1856,

1880,

1925,

101,
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102,
120, 121,
153, 154,
171, 172,
206, 211,
244, 245,
263, 264,
285, 290,
319, 327,
366, 367,
389, 390,
405, 406,
421, 422,
436, 437,
459, 462,
485, 486,
516, 517,
546, 548,
576, 577,
623, 624,
662, 663,
680, 682,
700, 702,
744, 745,
790, 800,
913, 915,
932, 933, 934
966, 972, 973
995, 996, 998
1236,
1255,
1293,
1334,
1349,
1367,
1383,
1400,
1426,
1451,
1480,
1512,
1541,
1573,
1740,
1752,
1768,
1785,
1803,
1829,
1857,
1883,
1927,

103,

122
155
173
212
247
265
292
328
368
391
407
423
438
464
493
522
553
580
626
665
683
708
752
801
916

1401,
1428,
1456,
1481,

104,

, 124,
, 156,
, 174,
, 219,
, 248,
, 266,
, 296,
, 329,
, 369,
, 392,
, 408,
, 424,
, 439,
, 465,
, 495,
, 524,
, 5565,
, 581,
, 632,
, 666,
, 684,
, 710,
, 754,
, 843,
, 917,
, 936,
, 978,
, 999,
1237, 1238,
1264, 1267,
1294, 1324,
1335, 1336,
1350, 1351,
1372, 1373,
1384, 1385,
1404,
1429,
1457,
1487,
1515, 1518,
1542, 1544,
1644, 1648,
1741, 1742,
1753, 1754,
1769, 1770,
1787, 1788,
1806, 1807,
1833, 1837,
18568, 1859,
1885, 1886,
1928, 1930,

105,

1239,
1270,
1325,
1337,
1352,
1374,
1386,
1405,
1438,
1460,
1488,
1521,
1547,
1673,
1743,
1755,
1771,
1789,
1809,
1839,
1860,
1887,
1952,

126,
157,
176,
220,
249,
267,
297,
333,
370,
393,
409,
425,
440,
466,
497,
525,
558,
582,
641,
667,
686,
712,
756,
845,
919,
938,
979, 981,
1000,

107,

127,
158,
178,
222,
250,
269,
298,
335,
372,
394,
410,
426,
442,
467,
501,
526,
562,
589,
647,
668,
688,
714,
757,
854,
920,
940,

108,

1003,
1240,
1273,
1326,
1338,
1354,
1375,
1387,
1408,
1440,
1461,
1489,
1524,
1550,
1674,
1744,
1756,
1772,
1791,
1810,
1842,
1861,
1889,
1953,

128,
159,
179,
226,
251,
270,
299,
342,
374,
395,
411,
427,
443,
469,
502,
527,
564,
590,
649,
669,
689,
716,
758,
855,
921,
941,
982,

1241,
1279,
1327,
1339,
1356,
1376,
1388,
1410,
1441,
1462,
1493,
1527,
15562,
1700,
1745,
1757,
1773,
1793,
1811,
1845,
1863,
1892,
1954,

109,

1011,

130,
160,
180,
233,
253,
271,
300,
355,
376,
396,
412,
428,
444,
470,
503,
533,
565,
591,
651,
670,
690,
720,
762,
856,
922,
943,
983,

110,
131,
162,
187,
237,
254,
273,
301,
357,
378,
397,
413,
429,
445,
473,
504,
537,
566,
593,
652,
671,
691,
722,
763,
857,
923,
945,
985,
1022,

1242,
1280,
1328,
1340,
1357,
1377,
1389,
1419,
1442,
1464,
1494,
1530,
1553,
1702,
1746,
1759,
1774,
1795,
1813,
1848,
1866,
1895,
1955,

29




2045,
2072,
2139,
2386,
2499,
2624,
3055,
3067,
3079,
3094,
3112,
3127,
3143,
3161,
3180,
3193,
3212,
3253,
3285,
3302,
3317,
3346,
3362,
3424,
3525,
3579,
3938,
3972,
4050,
4141,
4188,
4496,
4560,
4651,

2047,
2075,
2140,
2387,
2502,
2648,
3056,
3068,
3080,
3095,
3113,
3128,
3144,
3162,
3181,
3195,
3214,
3254,
3286,
3303,
3318,
3347,
3374,
3426,
3530,
3580,
3939,
3973,
4062,
4146,
4190,
4499,
4561,
4759,

2049,
2076,
2170,
2442,
2508,
2650,
3057,
3069,
3081,
3096,
3114,
3129,
3145,
3163,
3182,
3197,
3215,
3260,
3287,
3306,
3319,
3348,
3375,
3428,
3531,
3830,
3949,
3975,
4064,
4147,
4204,
4500,
4562,
4760,

2051,
2079,
2171,
2445,
2511,
3046,
3058,
3070,
3082,
3099,
3115,
3130,
3149,
3169,
3183,
3199,
3216,
3268,
3288,
3308,
3320,
3350,
3383,
3446,
3534,
3831,
3951,
4006,
4067,
4148,
4205,
4501,
4579,
4761,

2053,
2084,
2196,
2448,
2514,
3047,
3059,
3071,
3083,
3100,
3117,
3131,
3151,
3170,
3184,
3200,
3217,
3269,
3289,
3309,
3322,
3351,
3385,
3447,
3539,
3832,
3952,
4029,
4078,
4149,
4223,
4502,
4580,
4762,
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2054,
2087,
2224,
2451,
2517,
3048,
3060,
3072,
3084,
3101,
3119,
3132,
3152,
3171,
3185,
3201,
3218,
3270,
3290,
3310,
3324,
3352,
3398,
3455,
3542,
3833,
3958,
4030,
4081,
4154,
4224,
4504,
4581,
4766 1

2055,
2088,
2234,
2478,
2520,
3049,
3061,
3073,
3085,
3104,
3120,
3133,
3153,
3172,
3187,
3204,
3226,
3278,
3291,
3311,
3326,
3354,
3399,
3457,
3545,
3835,
3960,
4033,
4089,
4155,
4225,
4508,
4583,

2056,
2092,
2236,
2484,
2523,
3050,
3062,
3074,
3086,
3105,
3121,
3135,
3154,
3173,
3188,
3206,
3234,
3280,
3292,
3312,
3327,
3355,
3417,
3469,
3548,
3837,
3962,
4034,
4090,
4169,
4254,
4510,
4587,

2057,
2133,
2238,
2487,
2550,
3051,
3063,
3075,
3087,
3106,
3122,
3137,
3155,
3174,
3189,
3207,
3235,
3281,
3295,
3313,
3329,
3356,
3418,
3471,
3550,
3839,
3963,
4037,
4114,
4171,
4286,
4521,
4597,

2059,
2135,
2254,
2490,
25563,
3052,
3064,
3076,
3089,
3109,
3123,
3139,
3157,
3175,
3190,
3208,
3236,
3282,
3296,
3314,
3330,
3359,
3419,
3521,
3551,
3849,
3964,
4038,
4138,
4175,
4289,
4525,
4598,

2067,
2136,
2355,
2493,
2559,
3053,
3065,
3077,
3090,
3110,
3124,
3141,
3159,
3177,
3191,
3209,
3244,
3283,
3298,
3315,
3338,
3360,
3420,
3523,
3554,
38561,
3966,
4046,
4139,
4180,
4391,
4544,
4599,

2068,
2137,
2356,
2496,
2621,
3054,
3066,
3078,
3091,
3111,
3125,
3142,
3160,
3179,
3192,
3210,
3252,
3284,
3299,
3316,
3345,
3361,
3422,
3524,
3557,
3877,
3968,
4048,
4140,
4183,
4397,
4559,
4600,




Chapter 2

Cubical complexes & permutahedral
complexes

2.1 Cubical complexes

A finite simplicial complex can be defined to be a CW-subcomplex of the canonical regular
CW-structure on a simplex A" of some dimension n. Analogously, a finite cubical complex is
a CW-subcomplex of the regular CW-structure on a cube [0,1]" of some dimension n. Equiv-
alently, but more conveniently, we can replace the unit interval [0,1] by an interval [0,k] with
CW -structure involving 2k + 1 cells, namely one O-cell for each integer 0 < j < k and one 1-cell
for each open interval (j,j+ 1) for 0 < j <k —1. A finite cuical complex M is a CW-subcompex
M C [0,ki] x [0,kz] x ---[0,k,] of a direct product of intervals, the direct product having the usual
direct product CW -structure. The equivalence of these two definitions follows from the Gray code
embedding of a mesh into a hypercube. We say that the cubical complex has ambient dimension n. A
cubical complex M of ambient dimension # is said to be pure if each cell lies in the boundary of an
n-cell. In other words, M is pure if it is a union of unit n-cubes in R", each unit cube having vertices
with integer coordinates.

HAP has a datatype for finite cubical complexes, and a slightly different datatype for pure cubical
complexes.

The following example constructs the granny knot (the sum of a trefoil knot with its reflection) as

a 3-dimensional pure cubical complex, and then displays it.
Example

gap> K:=PureCubicalKnot(3,1);
prime knot 1 with 3 crossings

gap> L:=ReflectedCubicalKnot (K);
Reflected( prime knot 1 with 3 crossings )

gap> M:=KnotSum(K,L);
prime knot 1 with 3 crossings + Reflected( prime knot 1 with 3 crossings )

gap> Display(M);

Next we construct the complement ¥ = D3\ M of the interior of the pure cubical complex M.
Here D? is a rectangular region with M C D3. This pure cubical complex Y is a union of 5891 unit
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3-cubes. We contract Y to get a homotopy equivalent pure cubical complex YY consisting of the union
of just 775 unit 3-cubes. Then we convert Y'Y to a regular CW-complex W involving 11939 cells. We
contract W to obtain a homotopy equivalent regular CW-complex WW involving 5993 cells. Finally
we compute the fundamental group of the complement of the granny knot, and use the presentation of

this group to establish that the Alexander polynomial P(x) of the granny is

Plx)=x*—2x> +3x2 —2x+1.
Example

gap> Y:=PureComplexComplement (M) ;
Pure cubical complex of dimension 3.

gap> Size(Y);
5891

gap> YY:=ZigZagContractedComplex(Y);
Pure cubical complex of dimension 3.

gap> Size(YY);
775

gap> W:=RegularCWComplex (YY) ;
Regular CW-complex of dimension 3

gap> Size(W);
11939

gap> WW:=ContractedComplex (W) ;
Regular CW-complex of dimension 2

gap> Size(WW) ;
5993

gap> G:=FundamentalGroup (WW) ;
<fp group of size infinity on the generators [ f1, f2, £3 1>

gap> AlexanderPolynomial(G);
x_174-2%x_1"3+3*x_1"2-2*%x_1+1

2.2 Permutahedral complexes

A finite pure cubical complex is a union of finitely many cubes in a tessellation of R” by unit cubes.
One can also tessellate R” by permutahedra, and we define a finite n-dimensional pure permutahedral
complex to be a union of finitely many permutahdra from such a tessellation. There are two features

of pure permutahedral complexes that are particularly useful in some situations:

* Pure permutahedral complexes are topological manifolds with boundary.

 The method used for finding a smaller pure cubical complex M’ homotopy equivalent to a given
pure cubical complex M retains the homeomorphism type, and not just the homotopy type, of

the space M.



A newer HAP tutorial

EXAMPLE 1
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To illustrate these features the following example begins by reading in a protein backbone from
the online Protein Database, and storing it as a pure cubical complex K. The ends of the protein have
been joined, and the homology H;(K,Z) = Z, i = 0,1 is seen to be that of a circle. We can thus regard

the protein as a knot K C R3. The protein is visualized as a pure permutahedral complex.
Example

gap> file:=HapFile("datalV2X.pdb");;
gap> K:=ReadPDBfileAsPurePermutahedralComplex("file");
Pure permutahedral complex of dimension 3.

gap> Homology(K,0);
[ 0]
gap> Homology(K,1);
[ 0]

Display (X) ;

An alternative method for seeing that the pure permutahedral complex K has the homotopy type
of a circle is to note that it is covered by open permutahedra (small open neighbourhoods of the
closed 3-dimensional permutahedral titles) and to form the nerve N = Nerve(% ) of this open covering
% . The nerve N has the same homotopy type as K. The following commands establish that N is a

1-dimensional simplicial complex and display N as a circular graph.

Example
gap> N:=Nerve(K);
Simplicial complex of dimension 1.

gap> Display (GraphOfSimplicialComplex(N));

The boundary of the pure permutahedral complex K is a 2-dimensional CW-complex B home-
omorphic to a torus. We next use the advantageous features of pure permutahedral complexes to

compute the homomorphism
¢:m(B) = m(R3\ K),a > yx 3y2x 2yxy~ L b yx 1y~
where

m(B)=<a,b:aba b =1>,

m(RA\K) =< x,y : y2x 2y = 1y 2y Ie(xy )2 =1 >.

Example

1x2y71

gap> Y:=PureComplexComplement (K) ;

Pure permutahedral complex of dimension 3.
gap> Size(Y);

418922

gap> YY:=ZigZagContractedComplex(Y);

Pure permutahedral complex of dimension 3.
gap> Size(YY);

3438

gap> W:=RegularCWComplex (YY) ;
Regular CW-complex of dimension 3



https://www.rcsb.org/

A newer HAP tutorial 34

gap> f:=BoundaryMap (W) ;
Map of regular CW-complexes

gap> CriticalCells(Source(f));
(2,11, 02, 62601, [ 1, 10431, [ 1, 16261, [ 0, 2892 1, [ 0, 247156 ] ]

gap> F:=FundamentalGroup(f,2892);
[ £f1, f2 1 -> [ f2*xf1~-3*f2°2%xf1~-2%f2*f1xf2~-1, f2*f1--1*f2~-1*xf1-2%xf2~-1 ]

gap> G:=Target (F);

<fp group on the generators [ f1, £f2 1>

gap> Relators0fFpGroup(G) ;

[ £272%f1~-2%f2*%xf1xf2~-1, f2*xf1~-2%f2"-1xfi1x(f1*x£f2"-1)"2 ]

EXAMPLE 2

The next example of commands begins by readng two synthetic knots from a CSV file (containing
the coordinates of the two sequences of vertices) and producing a pure permutahedral complex model
of the two knots. The linking number of two knots is given by the low-dimension cup product of the
complement of the knots. This linking number is computed to be 6.

Example
gap> filel:=HapFile("datal75_1.csv");;

gap> file2:=HapFile("datal75_2.csv");;

gap> K:=ReadCSVfileAsPureCubicalKnot( [filel, file2]);;

gap> K:=PurePermutahedralComplex(K!.binaryArray);;

gap> K:=ThickenedPureComplex(K) ;;

gap> K:=ContractedComplex(K);;

gap> #K is a permutahedral complex model of the two input knots
gap> Display(K);

gap> Y:=PureComplexComplement (K) ;;
gap> W:=ZigZagContractedComplex(Y,2);;
gap> W:=RegularCWComplex (W) ;;

gap> W:=ContractedComplex (W) ;;

gap> G:=FundamentalGroup (W) ;;

gap> cup:=CupProduct(G);;

gap> cup([1,0],[0,1]1);

[ -6, 0]

2.3 Constructing pure cubical and permutahedral complexes

An n-dimensional pure cubical or permutahedral complex can be created from an n-dimensional array
of Os and 1s. The following example creates and displays two 3-dimensional complexes.
Example

gap> A:=[[[0,0,0],[0,0,0],[0,0,011,
> (f1,1,11,[1,0,11,01,1,111,
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> tfo,o,01,[0,0,0],[0,0,0]11];;
gap> M:=PureCubicalComplex(A);
Pure cubical complex of dimension 3.

gap> P:=PurePermutahedralComplex(A);
Pure permutahedral complex of dimension 3.

gap> Display(M);
gap> Display(P);

2.4 Computations in dynamical systems

Pure cubical complexes can be useful for rigourous interval arithmetic calculations in numerical anal-
ysis. They can also be useful for trying to estimate approximations of certain numerical quantities. To
illustrate the latter we consider the Henon map

2 s [ x y+1—ax?
rRor (1) e ().

Starting with (xo,y0) = (0,0) and iterating (x,41,Yn+1) = f (%, ) With the parameter values a =
1.4, b = 0.3 one obtains a sequence of points which is known to be dense in the so called strange
attractor </ of the Henon map. The first 10 million points in this sequence are plotted in the following
example, with arithmetic performed to 100 decimal places of accuracy. The sequence is stored as a
2-dimensional pure cubical complex where each 2-cell is square of side equal to € = 1/500.

Example
gap> M:=HenonOrbit([0,0],14/10,3/10,10"7,500,100) ;
Pure cubical complex of dimension 2.

gap> Size(M);
10287

gap> Display(M);

Repeating the computation but with squares of side € = 1/1000

Example
gap> M:=HenonOrbit([0,0],14/10,3/10,10"7,1000,100);

gap> Size(M);
24949

we obtain the heuristic estimate
~ 10g24949—10g 10287 __
0~ S T R 1.277
for the box-counting dimension of the attractor ..



Chapter 3

Covering spaces

Let Y denote a finite regular CW-complex. Let Y denote its universal covering space. The covering
space inherits a regular CW-structure which can be computed and stored using the datatype of a
mY -equivariant CW -complex. The cellular chain complex C,Y of ¥ can be computed and stored as
an equivariant chain complex. Given an admissible discrete vector field on Y, we can endow Y with a
smaller non-regular CW -structre whose cells correspond to the critical cells in the vector field. This
smaller CW -structure leads to a more efficient chain complex C.Y involving one free generator for
each critical cell in the vector field.

3.1 Cellular chains on the universal cover

The following commands construct a 6-dimensional regular CW-complex ¥ ~ §' x §! x S! homotopy

equivalent to a product of three circles.
Example

gap> A:=[[1,1,1],[1,0,11,01,1,111;;
gap> S:=PureCubicalComplex(A);;
gap> T:=DirectProduct(S,S,S);;

gap> Y:=RegularCWComplex(T) ;;
Regular CW-complex of dimension 6

gap> Size(Y);
110592

The CW-somplex Y has 110592 cells. The next commands construct a free ;Y -equivariant
chain complex C..Y homotopy equivalent to the chain complex of the universal cover of Y. The chain
complex C.Y has just 8 free generators.

Example
gap> Y:=ContractedComplex(Y);;

gap> CU:=ChainComplexOfUniversalCover(Y);;
gap> List([0..Dimension(Y)],n->CU!.dimension(n));
[1, 3, 3, 1]

The next commands construct a subgroup H < ;Y of index 50 and the chain complex C*Y QzH
Z which is homotopy equivalent to the cellular chain complex C,Yy of the 50-fold cover Yy of Y
corresponding to H.

36
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Example
gap> L:=LowIndexSubgroupsFpGroup(CU!.group,50);;
gap> H:=L[Length(L)-1];;

gap> Index(CU!.group,H);

50

gap> D:=TensorWithIntegersOverSubgroup(CU,H) ;
Chain complex of length 3 in characteristic O .

gap> List([0..3],D!.dimension);
[ 50, 150, 150, 50 1]

General theory implies that the 50-fold covering space Yy should again be homotopy equivalent
to a product of three circles. In keeping with this, the following commands verify that Yy has the same
integral homology as S' x §! x S!.

Example

gap> Homology(D,0);
[ 0]

gap> Homology(D,1);
[0, 0, 0]

gap> Homology(D,2);
[0, 0, 01

gap> Homology(D,3);
[ 0]

3.2 Spun knots and the Satoh tube map

We’ll contruct two spaces Y, W with isomorphic fundamental groups and isomorphic intergal homol-
ogy, and use the integral homology of finite covering spaces to establsh that the two spaces have
distinct homotopy types.

By spinning a link K C R? about a plane P C R® with PN K = 0, we obtain a collection Sp(K) C
R* of knotted tori. The following commands produce the two tori obtained by spinning the Hopf
link K and show that the space ¥ = R*\ Sp(K) = Sp(R*\ K) is connected with fundamental group
mY = 7 x Z and homology groups Hy(Y) = Z, H\(Y) = 72, Hy(Y) = Z*, H5(Y,Z) = Z>. The space
Y is only constructed up to homotopy, and for this reason is 3-dimensional.
Example

gap> Hopf :=PureCubicallLink ("Hopf");
Pure cubical link.

gap> Y:=SpunAboutInitialHyperplane (PureComplexComplement (Hopf)) ;
Regular CW-complex of dimension 3

gap> Homology(Y,0);

[ 0]
gap> Homology(Y,1);
(o0,0]

gap> Homology(Y,2);
[ O’ 0, O, O ]
gap> Homology(Y,3);
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[0, 0]

gap> Homology(Y,4);

[ ]

gap> GY:=FundamentalGroup(Y);;
gap> Generators0fGroup(GY);

[ £2, £3 ]

gap> Relators0fFpGroup(GY);

[ £37-1*f27-1%£3%f2 ]

38

An alternative embedding of two tori L C R* can be obtained by applying the tube map’ of Shin
Satoh to a welded Hopf link [Sat00]. The following commands construct the complement W = R*\ L
of this alternative embedding and show that W has the same fundamental group and integral homology

as Y above.
Example

gap> L:=HopfSatohSurface();
Pure cubical complex of dimension 4.

gap> W:=ContractedComplex(RegularCWComplex (PureComplexComplement (L)) ) ;
Regular CW-complex of dimension 3

gap> Homology (W,0);

[ 0]
gap> Homology (W,1);
L0, 0]

gap> Homology(W,2);
[0, 0, 0, 0]
gap> Homology(W,3);
[0, 0]

gap> Homology(W,4) ;
]

gap> GW:=FundamentalGroup (W) ;;
gap> Generators0fGroup (GW) ;

[ £f1, f2 ]

gap> Relators0fFpGroup (GW) ;

[ £17-1*f27-1xf1%f2 ]

Despite having the same fundamental group and integral homology groups, the above two spaces
Y and W were shown by Kauffman and Martins [KFMOS8] to be not homotopy equivalent. Their
technique involves the fundamental crossed module derived from the first three dimensions of the
universal cover of a space, and counts the representations of this fundamental crossed module into a
given finite crossed module. This homotopy inequivalence is recovered by the following commands

which involves the 5-fold covers of the spaces.
Example

gap> CY:=ChainComplexOfUniversalCover(Y);
Equivariant chain complex of dimension 3
gap> LY:=LowIndexSubgroups(CY!.group,5);;
gap> invY:=List(LY,g->Homology(TensorWithIntegersOverSubgroup(CY,g),2));;
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gap> CW:=ChainComplexOfUniversalCover (W) ;
Equivariant chain complex of dimension 3
gap> LW:=LowIndexSubgroups (CW!.group,5);;
gap> invW:=List (LW, g->Homology(TensorWithIntegersOverSubgroup(CW,g),2));;

gap> SSortedList(invY)=SSortedList (invW) ;
false

39

3.3 Cohomology with local coefficients

The 7Y -equivariant cellular chain complex C.Y of the universal cover ¥ of a regular CW-complex Y
can be used to compute the homology H,,(Y,A) and cohomology H"(Y,A) of Y with local coefficients
in a ZmY-module A. To illustrate this we consister the space Y arising as the complement of the
trefoil knot, with fundamental group m;Y = (x,y : xyx = yxy). We take A = Z to be the integers with

non-trivial 7Y -action given by x.1 = —1,y.1 = —1. We then compute
Hy(Y,A) = Z,
H\(Y,A) = Z3,
H(Y,A) = Z.
Example

gap> K:=PureCubicalKnot(3,1);;

gap> Y:=PureComplexComplement (K) ;;

gap> Y:=ContractedComplex(Y);;

gap> Y:=RegularCWComplex(Y);;

gap> Y:=SimplifiedComplex(Y);;

gap> C:=ChainComplex0fUniversalCover(Y);;

gap> G:=C!.group;;

gap> GeneratorsOfGroup(G) ;

[ £f1, f2 ]

gap> RelatorsOfFpGroup(G);

[ £27-1#f1~-1%f2"-1*F1*f2*%f1, £1~-1*F2"-1*f1~-1*f2xf1*f2 ]
gap> hom:=GroupHomomorphismByImages (G,Group([[-111),[G.1,G.2],[[[-111,[[-1111);;
gap> A:=function(x); return Determinant (Image(hom,x)); end;;
gap> D:=TensorWithTwistedIntegers(C,A); #Here the function A represents
gap> #the integers with twisted action of G.

Chain complex of length 3 in characteristic O .

gap> Homology(D,0);

[ 2]

gap> Homology(D,1);

[ 3]

gap> Homology(D,2);

[ 0]
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3.4 Distinguishing between two non-homeomorphic homotopy equiva-
lent spaces

The granny knot is the sum of the trefoil knot and its mirror image. The reef knot is the sum of
two identical copies of the trefoil knot. The following commands show that the degree 1 homology
homomorphisms N

H,(p~'(B),Z) — H\(Xn,Z)

distinguish between the homeomorphism types of the complements X C R* of the granny knot
and the reef knot, where B C X is the knot boundary, and where p:)?H — X is the covering map
corresponding to the finite index subgroup H < 71 X. More precisely, p~!(B) is in general a union of
path components

p Y(B)=B,UB,U---UB, .

The function FirstHomologyCoveringCokernels(f,c) inputs an integer ¢ and the inclusion
f:B — X of a knot boundary B into the knot complement X. The function returns the ordered list of
the lists of abelian invariants of cokernels

coker( H, (pil(Bi),Z) — H (XVH,Z> )

arising from subgroups H < 71X of index c. To distinguish between the granny and reef knots we

use index ¢ = 6.
Example

gap> K:=PureCubicalKnot(3,1);;

gap> L:=ReflectedCubicalKnot (K);;

gap> granny:=KnotSum(K,L);;

gap> reef:=KnotSum(K,K) ;;

gap> fg:=KnotComplementWithBoundary (ArcPresentation(granny));;
gap> fr:=KnotComplementWithBoundary(ArcPresentation(reef));;
gap> a:=FirstHomologyCoveringCokernels(fg,6);;

gap> b:=FirstHomologyCoveringCokernels(fr,6);;

gap> a=b;

false

3.5 Second homotopy groups of spaces with finite fundamental group

If p: Y — Y is the universal covering map, then the fundamental group of Y is trivial and the Hurewicz
homomorphism Y — Hz(Y Z) from the second homotopy group of Y to the second ] integral homol-
ogy of Y is an isomorphism. Furthermore, the map p induces an isomorphism mY — mY. Thus
HZ(Y , 7)) is isomorphic to the second homotopy group m,Y .

If the fundamental group of Y happens to be finite, then in principle we can calculate Hg(?, 7)==
mY. We illustrate this computation for Y equal to the real projective plane. The above computation
shows that Y has second homotopy group mY = Z.

Example
gap> K:=[ [1,2,3], [1,3,4]1, [1,2,6], [1,5,6], [1,4,5],
> [2,3,5], [2,4,5], [2,4,6], [3,4,6], [3,5,6]];;

gap> K:=MaximalSimplicesToSimplicialComplex (K) ;
Simplicial complex of dimension 2.

gap> Y:=RegularCWComplex (K) ;
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Regular CW-complex of dimension 2
gap> # Y is a regular CW-complex corresponding to the projective plane.

gap> U:=UniversalCover(Y);
Equivariant CW-complex of dimension 2

gap> G:=U!.group;;

gap> # G is the fundamental group of Y, which by the next command
gap> # is finite of order 2.

gap> Order(G);

2

gap> U:=EquivariantCWComplexToRegularCWComplex (U,Group(One(G)));
Regular CW-complex of dimension 2
gap> #U is the universal cover of Y

gap> Homology(U,0);
(0]
gap> Homology(U,1);
]
gap> Homology(U,2);
[ 0]

3.6 Third homotopy groups of simply connected spaces

3.6.1 First example: Whitehead’s certain exact sequence

For any path connected space Y with universal cover Y there is an exact sequence

— mY — Hy(Y,Z) — Hy(K(mY ,2),Z) — m3Y — H3(Y,Z) = 0

due to J.H.C.Whitehead. Here K (7>(Y),2) is an Eilenberg-MacLane space with second homotopy
group equal to mY.

Continuing with the above example where Y is the real projective plane, we see that H4(17 ,Z)
Hg(?, Z) = 0 since Y is a 2-dimensional CW-space. The exact sequence implies Y
Hy(K (7t217 ,2),7Z). Furthermore, ;Y = m3Y. The following commands establish that m3Y = 7Z.
Example

11l

gap> A:=AbelianPcpGroup([0]);
Pcp-group with orders [ 0 ]

gap> K:=EilenbergMacLaneSimplicialGroup(A,2,5);;
gap> C:=ChainComplex0fSimplicialGroup (K) ;
Chain complex of length 5 in characteristic O .

gap> Homology(C,4);
[ 0]
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3.6.2 Second example: the Hopf invariant

The following commands construct a 4-dimensional simplicial complex Y with 9 vertices and 36
4-dimensional simplices, and establish that

mY = O, mY = Z,H3(Y,Z) = O,H4(Y,Z) = 7.
Example
2, 4, 5
5,
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gap> K:=MaximalSimplicesToSimplicialComplex (smp) ;
Simplicial complex of dimension 4.

gap> Y:=RegularCWComplex (Y);
Regular CW-complex of dimension 4

gap> Order (FundamentalGroup(Y));
1

gap> Homology(Y,2);

[ 0]

gap> Homology(Y,3);

[ 1]

gap> Homology(Y,4);

(0]

Previous commands have established H4(K(Z,2),7Z) = Z. So Whitehead’s sequence reduces to an
exact sequence

7Z—>7Z—mY —0

in which the first map is Hy(Y,Z) = Z — H4(K(mY,2),7Z) = Z. Hence m3Y is cyclic.

HAP is currently unable to compute the order of 73Y directly from Whitehead’s sequence. Instead,
we can use the Hopf invariant. For any map ¢:S> — S? we consider the space C(¢) = S> Usp ¢* obtained
by attaching a 4-cell ¢* to S? via the attaching map ¢. The cohomology groups H>(C(¢),Z) = Z,
H*(C(¢),Z) = 7 are generated by elements «, 8 say, and the cup product has the form

—U—:H2(C(9),Z) x HX(C($),Z) — H*(C(9).Z), (0t, &) 1= ho B

for some integer hy. The integer hy is the HOPF INVARIANT. The function h: m(S3) = Zis a
homomorphism and there is an isomorphism

7173(52 U€4) = Z/<h¢>.

The following commands begin by simplifying the cell structure on the above CW-complex ¥ = K
to obtain a homeomorphic CW-complex W with fewer cells. They then create a space S by removing
one 4-cell from W. The space S is seen to be homotopy equivalent to a CW-complex e Ue" with a



A newer HAP tutorial 43

single 0-cell and single 2-cell. Hence S ~ S? is homotopy equivalent to the 2-sphere. Consequently
Y ~C(¢) = S?U, e* for some map ¢: 5> — S2.
Example

gap> W:=SimplifiedComplex(Y);
Regular CW-complex of dimension 4

gap> S:=RegularCWComplexWithRemovedCell(W,4,6);
Regular CW-complex of dimension 4

gap> CriticalCells(S);
[[2,61, [0,51]1]1]

The next commands show that the map ¢ in the construction ¥ ~ C(¢) has Hopf invariant -1.

Hence h: 713(S*) — Z is an isomorphism. Therefore 713Y = 0.
Example

gap> IntersectionForm(K) ;

[[-111

[The simplicial complex K in this second example is due to W. Kuehnel and T. F. Banchoff and is
homeomorphic to the complex projective plane. ]

3.7 Computing the second homotopy group of a space with infinite fun-
damental group

The following commands compute the second integral homology
Hy(mW,Z2) =7

of the fundamental group ;W of the complement W of the Hopf-Satoh surface.
Example

gap> L:=HopfSatohSurface();
Pure cubical complex of dimension 4.

gap> W:=ContractedComplex(RegularCWComplex (PureComplexComplement (L)) ) ;
Regular CW-complex of dimension 3

gap> GW:=FundamentalGroup (W) ;;

gap> IsAspherical (GW);

Presentation is aspherical.

true

gap> R:=ResolutionAsphericalPresentation(GW);;
gap> Homology(TensorWithIntegers(R),2);

[ 0]

From Hopf’s exact sequence
MW~ Hy (W, Z) — Hy(mW,Z) — 0
and the computation H>(W,Z) = Z* we see that the image of the Hurewicz homomorphism is

im(h) = Z3 . The image of h is referred to as the subgroup of spherical homology classes and often
denoted by X°W.
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The following command computes the presentation of ;W corresponding to the 2-skeleton W?>
and establishes that W? = 52 v 82 v §? v (S! x S') is a wedge of three spheres and a torus.
Example
gap> F:=FundamentalGroupOfRegularCWComplex (W, "no simplification");
< fp group on the generators [ f1, £2 ]>
gap> RelatorsOfFpGroup(F);
[ < identity ...>, f1~-1%f2"-1*f1xf2, < identity ...>, <identity ...> ]

The next command shows that the 3-dimensional space W has two 3-cells each of which is

attached to the base-point of W with trivial boundary (up to homotopy in W?). Hence W =
SvSvSivsZvsty (st xsh.

Example

gap> CriticalCells(W);

(s, 11, [3, 31481, [ 2, 6746 1, [ 2, 20510 1, [ 2, 33060 ],
[ 2, 50019 1, [ 1, 29368 1, [ 1, 50822 ], [ 0, 21131 ] ]

gap> CriticalBoundaryCells(W,3,1);

[ ]

gap> CriticalBoundaryCells(W,3,3148);

[ -50919, 50919 ]

Therefore m; W is the free abelian group on two generators, and mW is the free Zm; W -module on
three free generators.



Chapter 4

Three Manifolds

4.1 Dehn Surgery

The following example constructs, as a regular CW-complex, a closed orientable 3-manifold W ob-
tained from the 3-sphere by drilling out a tubular neighbourhood of a trefoil knot and then gluing
a solid torus to the boundary of the cavity via a homeomorphism corresponding to a Dehn surgery
coefficient p/q = 17/16.

Example
gap> ap:=ArcPresentation(PureCubicalknot(3,1));;

gap> p:=17;;q:=16;;
gap> W:=ThreeManifoldViaDehnSurgery(ap,p,q);
Regular CW-complex of dimension 3

The next commands show that this 3-manifold W has integral homology
HyW,Z) =17, H(W,Z) = Zs, H2(W,Z) =0, H3(W,Z) = Z
and that the fundamental group m; (W) is non-abelian.

Example
gap> Homology(W,0) ;Homology(W,1) ;Homology(W,2) ;Homology (W,3);
(0]
[ 16 1]
]
[ 0]

gap> F:=FundamentalGroup (W) ;;

gap> L:=LowIndexSubgroupsFpGroup(F,10);;

gap> List(L,AbelianInvariants);

[[161]1, [3,81, (3,41, [2,31, [16, 431, [ 8, 43, 431 1

The following famous result of Lickorish and (independently) Wallace shows that Dehn surgery
on knots leads to an interesting range of spaces.

THEOREM: Every closed, orientable, connected 3 -manifold can be obtained by surgery on a
link in S3. (Moreover, one can always perform the surgery with surgery coefficients +1 and with each
individual component of the link unknotted.)

45
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4.2 Connected Sums

The following example constructs the connected sum W = A#B of two 3-manifolds, where A is ob-
tained from a 5/1 Dehn surgery on the complement of the first prime knot on 11 crossings and B is
obtained by a 5/1 Dehn surgery on the complement of the second prime knot on 11 crossings. The
homology groups

H, (W,Z) = Zp P Zs04, Hz(W,Z) =0, H; (W,Z) =7

are computed.
Example

gap> apl:=ArcPresentation(PureCubicalKnot(11,1));;

gap> A:=ThreeManifoldViaDehnSurgery(apl,5,1);;

gap> ap2:=ArcPresentation(PureCubicalKnot(11,2));;

gap> B:=ThreeManifoldViaDehnSurgery(ap2,5,1);;

gap> W:=ConnectedSum(A,B); #W:=ConnectedSum(A,B,-1) would yield A#-B where -B has
Regular CW-complex of dimension 3

gap> Homology(W,1);
[ 2, 594 ]

gap> Homology(W,2) ;
]

gap> Homology(W,3);
[ 0]

4.3 Dijkgraaf-Witten Invariant

Given a closed connected orientable 3-manifold W, a finite group G and a 3-cocycle a &€
H3(BG,U(1)) Dijkgraaf and Witten define the complex number

$$ Z~{G\alpha}(W) = \frac{1}H{IGI}\sum_{\gamma\in {\rm Hom}(\pi_1W, G)} \langle
\gamma~\ast[\alpha], [M]\rangle \ \in\ \mathbb C\ $$ where y ranges over all group homomor-
phisms y: mW — G. This complex number is an invariant of the homotopy type of W and is useful
for distinguishing between certain homotopically distinct 3-manifolds.

A homology version of the Dijkgraaf-Witten invariant can be defined as the set of homol-
ogy homomorphisms $$D_G(W) =\{ \gamma_\ast\colon H_3(W,\mathbb Z) \longrightarrow
H_3(BG,\mathbb Z) \}_{\gamma\in {\rm Hom}(\pi_1W, G)}.$$ Since H3(W,Z) = Z we represent
Dg(W) by the set Dg(W) = {¥:(1) } yetom(mw,) Where 1 denotes one of the two possible generators
of H3 (W, Z) .

For any coprime integers p,q > 1 the lens space L(p,q) is obtained from the 3-sphere by drilling
out a tubular neighbourhood of the trivial knot and then gluing a solid torus to the boundary of the
cavity via a homeomorphism corresponding to a Dehn surgery coefficient p/g. Lens spaces have
cyclic fundamental group 7;(L(p,q)) = C, and homology H\(L(p,q),Z) = Z,, H»(L(p,q),Z) = 0,
H3(L(p,q),Z) = Z. 1t was proved by J.H.C. Whitehead that two lens spaces L(p,q) and L(p’,q’) are
homotopy equivalent if and only if p = p’ and gq' = £n? mod p for some integer n.

The following session constructs the two lens spaces L(5,1) and L(5,2). The homology version
of the Dijkgraaf-Witten invariant is used with G = Cs to demonstrate that the two lens spaces are not
homotopy equivalent.

Example
gap> ap:=[[2,1],[2,1]];; #Arc presentation for the trivial knot

the opposite oz
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gap> L51:=ThreeManifoldViaDehnSurgery(ap,5,1);;
gap> D:=DijkgraafWittenInvariant(L51,CyclicGroup(5));
[ g1~4, g1~

4, g1, g1, id ]

gap> L52:=ThreeManifoldViaDehnSurgery(ap,5,2);;
gap> D:=DijkgraafWittenInvariant(L52,CyclicGroup(5));
[ g1~3, g1~

3, gl~2, gi1~2, id ]
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A theorem of Fermat and Euler states that if a prime p is congruent to 3 modulo 4, then for any ¢
exactly one of +¢ is a quadratic residue mod p. For all other primes p either both or neither of £¢ is a
quadratic residue mod p. Thus for fixed p = 3 mod 4 the lens spaces L(p,q) form a single homotopy

class. There are

precisely two homotopy classes of lens spaces for other p.

The following commands confirm that L(13,1) % L(13,2).

Example

gap> L13_1:

gap> L13_2:

id ]

=ThreeManifoldViaDehnSurgery([[1,2],[1,2]1],13,1);;

gap> DijkgraafWittenInvariant(L13_1,CyclicGroup(13));
[ g1~12, g1~12, g1~10, g1~10, g1~9, g1~9, gi~4, gl~4, gi1~3, g1°3, g1, gi, id ]

=ThreeManifoldViaDehnSurgery ([[1,2],[1,2]1],13,2);;

gap> DijkgraafWittenInvariant(L13_2,CyclicGroup(13));
[ gi~11, gi~11, g1-8, g1~8, gl1~7, gi~7, gi~6, gl~6, gi~5, gi~5, gi~2, gi~2,

4.4 Cohomology rings

The following commands construct the multiplication table (with respect to some basis) for the co-
homology rings H*(L(13,1),7Z,3) and H*(L(13,2),7Z;3). These rings are isomorphic and so fail to
distinguish between the homotopy types of the lens spaces L(13,1) and L(13,2).

gap> L13_1:
gap> L13_2:
gap> L13_1:
gap> L13_2:
gap> A13_1:
gap> A13_2:
gap> M13_1:
gap> B13_1:
gap> M13_2:
gap> B13_2:
gap> for i
> for j in
> od;od;

gap> for i

> for j in

> od;od;

L

Example
=ThreeManifoldViaDehnSurgery([[1,2],[1,2]]1,13,1);;
=ThreeManifoldViaDehnSurgery([[1,2],[1,2]]1,13,2);;
=BarycentricSubdivision(L13_1);;
=BarycentricSubdivision(L13_2);;
=CohomologyRing(L13_1,13);;
=CohomologyRing(L13_2,13);;

=List([1..4],i->[1);;

=CanonicalBasis(A13_1);;

=List([1..4],i->[1);;

=CanonicalBasis(A13_2);;

in [1..4] do

[1..4] do

> M13_1[1i] [j]:=B13_1[i]*B13_1[j];

in [1..4] do
[1..4] do

> M13_2[1i] [j]:=B13_2[i]*B13_2[j];

gap> Display(M13_1);

v.1, V.2, v.3,
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[ v.2, Ooxv.1, (Z(13)"6)x*v.4, Oxv.1 1,
[ v.3, (Z(13)"6)*v.4, O*xv.1, O*xv.1 1],
[ v.4, O*xv.1, O*v.1, O*xv.1 ] 1]
gap> Display(M13_2);
[ [ v.1, v.2, v.3, v.4 ],
[ v.2, Oxv.1, (Z(13))*v.4, Oxv.1 1],
[ v.3, (Z(13))*v.4, O*xv.1, Oxv.1 1],
[ v.4, O*xv.1, O*xv.1, Oxv.1 1 ]
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4.5 Linking Form

Given a closed connected ORIENTED 3-manifold W let TH; (W, Z) denote the torsion subgroup of the
first integral homology. The linking form is a bilinear mapping

LkW:THl(W,Z) X TH} (W,Z) — Q/Z

To construct this form note that we have a Poincare duality isomorphism

p:HX(W,Z) — H{(W,Z),z zN W]

involving the cap product with the fundamental class [W] € H*>(W,Z). That is, [M] is the generator
of H*(W,Z) = 7 determining the orientation. The short exact sequence Z ~— Q —» Q/Z gives rise to
a cohomology exact sequence

— H'(W,Q) — H'(W.Q/Z) =5 H(W,Z) — H*(W.Q)
from which we obtain the isomorphism B: tH'(W,Q/Z)
can be defined as the composite

N
= TH? (W,Z). The linking form Lky

Liw: THy (W, Z) x THy (W, Z) 25 ok, (W, Z) x tH2(W, Z) 255 chy (W, Z) x oi (W, Q) Z) -5
Q/z

where ev(x, a) evaluates a 1-cocycle & on a 1-cycle x.

The linking form can be used to define the set

1O(W) = {Lkw(g.8) : g € TH1(W,Z)}

which is an oriented-homotopy invariant of W. Letting W+ and W~ denote the two possible
orientations on the manifold, the set

IW) ={1°(W*),1°(W™)}

is a homotopy invariant of W which in this manual we refer to as the linking form homotopy
invariant.

The following commands compute the linking form homotopy invariant for the lens spaces

L(13,q) with 1 < g < 12. This invariant distinguishes between the two homotopy types that arise.
Example

gap> LensSpaces:=[];;

gap> for q in [1..12] do

> Add(LensSpaces,ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,9));

> od;

gap> Display(List(LensSpaces,LinkingFormHomotopyInvariant));;

(CCo, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/1
[ o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12

[ [o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13
2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 1 1,

/1311,

1, [ 0, 2/13,
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[ [o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/1
[ o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12

[ [o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/1
[ o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12

[ [o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/1

[ [o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13
[ o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/1

[ [o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13
[ o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/1

[ [o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/1

[ [o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/1
[ o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12

[ [o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/1
[ o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12

[ [o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13
[ 0o, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/1

[ Lo, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/1
[ o, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12

4.6 Determining the homeomorphism type of a lens space

In 1935 K. Reidemeister [Rei35] classified lens spaces up to orientation preserving
PL-homeomorphism. This was generalized by E. Moise [Moi52] in 1952 to a classification up
to homeomorphism -- his method requred the proof of the Hauptvermutung for 3-dimensional
manifolds. In 1960, following a suggestion of R. Fox, a proof was given by E.J. Brody [Bro60]
that avoided the need for the Hauptvermutung. Reidemeister’s method, using what is know termed
Reidermeister torsion, and Brody’s method, using tubular neighbourhoods of 1-cycles, both require
identifying a suitable "preferred" generator of H,(L(p,q),Z). In 2003 J. Przytycki and A. Yasukhara
[PY03] provided an alternative method for classifying lens spaces, which uses the linking form and
again requires the identification of a "preferred" generator of H,(L(p,q),7Z).

Przytycki and Yasukhara proved the following.

THEOREM. Let p:S* — L(p,q) be the p-fold cyclic cover and K a knot in L(p,q) that represents
a generator of Hi(L(p,q),Z). If p~'(K) is the trivial knot, then Lk, , ([K],[K]) = q/p or =q/p €
Q/Z where gg =1 mod p.

The ingredients of this theorem can be applied in HAP, but at present only to small examples
of lens spaces. The obstruction to handling large examples is that the current default method for

31,
/13111
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computing the linking form involves barycentric subdivision to produce a simplicial complex from a
regular CW -complex, and then a homotopy equivalence from this typically large simplicial complex to
a smaller non-regular CW -complex. However, for homeomorphism invariants that are not homotopy
invariants there is a need to avoid homotopy equivalences. In the current version of HAP this means
that in order to obtain delicate homeomorphism invariants we have to perform homology computations
on typically large simplicial complexes. In a future version of HAP we hope to avoid the obstruction
by implementing cup products, cap products and linking forms entirely within the category of regular
CW -complexes.

The following commands construct a small lens space L = L(p,q) with unknown values of p,g.
Subsequent commands will determine the homeomorphism type of L.
Example

gap> p:=Random([2,3,5,7,11,13,17]1);;

gap> q:=Random([1..p-11);;

gap> L:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]1]1,p,q);
Regular CW-complex of dimension 3

We can readily determine the value of p = 11 by calculating the order of m; (L).
Example
gap> F:=FundamentalGroupWithPathReps(L);;
gap> StructureDescription(F);

n Cl 1 n

The next commands take the default edge path y:S' — L representing a generator of the cyclic
group 7 (L) and lift it to an edge path 7:S' — L.
Example

gap> U:=UniversalCover(L);;

gap> G:=U!.group;;

gap> p:=EquivariantCWComplexToRegularCWMap (U,Group(One(G)));;
gap> U:=Source(p);;

gap> gamma:=[];;

gap> gammal[2] :=F!.loops[1];;

gap> gammal[2] :=List (gamma[2],AbsInt);;

gap> gamma[1] :=List (gamma[2] ,k->L!.boundaries[2] [k]);;

gap> gammal[1] :=SSortedList (Flat(gammal[1]));;

gap>

gap> gammatilde:=[[],[1,[],[1];;

gap> for k in [1..U!.nrCells(0)] do

> if p!.mapping(0,k) in gamma[1] then Add(gammatilde[1],k); fi;
> od;

gap> for k in [1..U!.nrCells(1)] do

> if p!.mapping(l,k) in gamma[2] then Add(gammatilde[2],k); fi;
> od;

gap> gammatilde:=CWSubcomplexToRegularCWMap ([U,gammatilde]);
Map of regular CW-complexes

The next commands check that the path 7 is unknotted in L =2 S* by checking that 71 (L \ image(¥))
is infinite cyclic.
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Example
gap> C:=RegularCWComplexComplement (gammatilde) ;
Regular CW-complex of dimension 3

gap> G:=FundamentalGroup(C);
<fp group of size infinity on the generators [ f2 ]>

Since ¥ is unkotted the cycle y represents the preferred generator [y] € H,(L,Z). The next com-
mands compute Lk ([y],[y]) =7/11.

Example
gap> LinkingFormHomeomorphismInvariant (L) ;

[ 7/11 ]

The classification of Moise/Brody states that L(p,q) = L(p,q’) if and only if g¢' = 1 mod p.
Hence the lens space L has the homeomorphism type
L=L(11,7)=L(11,8) = L(11,4) = L(11,3).

4.7 Surgeries on distinct knots can yield homeomorphic manifolds

The lens space L(5,1) is a quotient of the 3-sphere S* by a certain action of the cyclic group Cs. It
can be realized by a p/q = 5/1 Dehn filling of the complement of the trivial knot. It can also be
realized by Dehn fillings of other knots. To see this, the following commands compute the manifold
W obtained from a p/q = 1/5 Dehn filling of the complement of the trefoil and show that W at least
has the same integral homology and same fundamental group as L(5,1).

Example
gap> ap:=ArcPresentation(PureCubicalknot(3,1));;
gap> W:=ThreeManifoldViaDehnSurgery(ap,1,5);;
gap> Homology(W,1);

[ 5]

gap> Homology(W,2);

[ 1]

gap> Homology(W,3);

[ 0]

gap> F:=FundamentalGroup(W);;
gap> StructureDescription(F);
n C5 n

The next commands construct the universal cover W and show that it has the same homology as

$% and trivivial fundamental group 7; (W) = 0.
Example

gap> U:=UniversalCover (W) ;;

gap> G:=U!.group;;

gap> Wtilde:=EquivariantCWComplexToRegularCWComplex (U,Group(One(G)));
Regular CW-complex of dimension 3
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gap> Homology(Wtilde,1);
[ 1]
gap> Homology(Wtilde,2);
]
gap> Homology(Wtilde,3);
[ 0]

gap> F:=FundamentalGroup(Wtilde);
<fp group on the generators [ ]>

By construction the space W is a manifold. Had we not known how the regular CW-complex w
had been constructed then we could prove that it is a closed 3-manifold by creating its barycentric
subdivision K = sdW, which is homeomorphic to W, and verifying that the link of each vertex in the
simplicial complex sdW is a 2-sphere. The following command carries out this proof.

Example

gap> IsClosedManifold(Wtilde);

true

The Poincare conjecture (now proven) implies that W is homeomorphic to $3. Hence W = §°/Cs is a
quotient of the 3-sphere by an action of Cs and is hence a lens space L(5,¢q) for some g.
The next commands determine that W is homeomorphic to L(5,4) = L(5,1).

Example
gap> Lk:=LinkingFormHomeomorphismInvariant (W) ;
[0, 4/5]

Moser [Mos71] gives a precise decription of the lens spaces arising from surgery on the trefoil
knot and more generally from surgery on torus knots. Greene [Gre13] determines the lens spaces that
arise by integer Dehn surgery along a knot in the three-sphere

4.8 Finite fundamental groups of 3-manifolds

Lens spaces are examples of 3-manifolds with finite fundamental groups. The complete list of finite
groups G arising as fundamental groups of closed connected 3-manifolds is recalled in 7.12 where
one method for computing their cohomology rings is presented. Their cohomology could also be
computed from explicit 3-manifolds W with ;W = G. For instance, the following commands realize
a closed connected 3-manifold W with mW = Cy; X SLy(Zs).

Example
gap> ap:=ArcPresentation(PureCubicalknot(3,1));;
gap> W:=ThreeManifoldViaDehnSurgery(ap,1,11);;
gap> F:=FundamentalGroup (W) ;;

gap> Order (F);

1320

gap> AbelianInvariants(F);

[ 11 ]

gap> StructureDescription(F);
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"C11 x SL(2,5)"

Hence the group G = Cy; x SLy(Zs) of order 1320 acts freely on the 3-sphere W. It thus has periodic
cohomology with

711 n=1mod4

0 n=2mod 4

21320 n=3mod4

¥ n=0mod 4

forn > 0.

4.9 Poincare’s cube manifolds

In his seminal paper on "Analysis situs", published in 1895, Poincare constructed a series of closed
3-manifolds which played an important role in the development of his theory. A good account of these
manifolds is given in the online Manifold Atlas Project (MAP). Most of his examples are constructed
by identifications on the faces of a (solid) cube. The function PoincareCubeCWComplex () can be
used to construct any 3-dimensional CW-complex arising from a cube by identifying the six faces
pairwise; the vertices and faces of the cube are numbered as follows

and barycentric subdivision is used to ensure that the quotient is represented as a regular
CW-complex.

Examples 3 and 4 from Poincare’s paper, described in the following figures taken from MAP,

are constructed in the following example. Both are checked to be orientable manifolds, and are
shown to have different homology. (Note that the second example in Poincare’s paper is not a manifold

- - the links of some of its vertices are not homeomorphic to a 2-sphere.)
Example

gap> A:=1;;C:=2;;D:=3;;B:=4;;
gap> Ap:=5;;Cp:=6;;Dp:=7;;Bp:=8;;

gap> L:=[[A,B,D,C], [Bp,Dp,Cp,Apl]l;;
gap> M:=[[A,B,Bp,Ap], [Cp,C,D,Dpl];;
gap> N:=[[A,C,Cp,Ap], [D,Dp,Bp,Bl];;
gap> Ex3:=PoincareCubeCWComplex(L,M,N);
Regular CW-complex of dimension 3

gap> IsClosedManifold(Ex3);
true

gap> L:=[[A,B,D,C], [Bp,Dp,Cp,Apl];;
gap> M:=[[A,B,Bp,Ap], [C,D,Dp,Cpl]l;;
gap> N:=[[A,C,Cp,Ap], [B,D,Dp,Bpll;;
gap> Ex4:=PoincareCubeCWComplex(L,M,N);
Regular CW-complex of dimension 3

gap> IsClosedManifold(Ex4) ;
true

gap> List([0..3],k->Homology(Ex3,k));


http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds
http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds
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tftol, 2,21, 11,0011
gap> List([0..3],k->Homology (Ex4,k)) ;
tfol, 2, 01,001, [01]

4.10 There are at least 25 distinct cube manifolds

The function PoincareCubeCWComplex (A,G) can also be applied to two inputs where A is a pairing
of the six faces such as A = [[1,2],[3,4],[5,6]] and G is a list of three elements of the dihedral group
of order 8 such as G = [(2,4),(2,4),(2,4) % (1,3)]. The dihedral elements specify how each pair of
faces are glued together. With these inputs it is easy to iterate over all possible values of A and G in
order to construct all possible closed 3-manifolds arising from the pairwise identification of faces of
a cube. We call such a manifold a CUBE MANIFOLD. Distinct values of A and G can of course yield
homeomorphic spaces. To ensure that each possible cube manifold is constructed, at least once, up to
homeomorphism it suffices to consider

A= [[172]7 [374]7 [576]]’ A= [[172]7 [375]7 [476“’ A= [[174]7 [276]7 [375]]

and all G in Dg x Dg X Dg.

The following commands iterate through these 3 x 8° = 1536 pairs (A, G) and show that in pre-
cisely 163 cases (just over 10% of cases) the quotient CW -complex is a closed 3-manifold.
Example

gap> Al:= [ [1,2], [3,4], [5,6] 1;;
gap> A2:=[ [1,2], [3,5], [4,6] 1;;
gap> A3:=[ [1,4], [2,6], [3,5] 1;;
gap> D8:=DihedralGroup(IsPermGroup,8);;

gap> Manifolds:=[];;

gap> for A in [A1,A2,A3] do

> for x in D8 do

for y in D8 do

for z in D8 do

G:=[x,y,z];
F:=PoincareCubeCWComplex (A,G) ;
b:=IsClosedManifold(F);

if b=true then Add(Manifolds,F); fi;
od;od;od;od;

V V V V V V V

gap> Size(Manifolds);
163

The following additional commands use integral homology and low index subgroups of fundamental
groups to establish that the 163 cube manifolds represent at least 25 distinct homotopy equivalence
classes of manifolds. One homotopy class is represented by up to 40 of the manifolds, and at least
four of the homotopy classes are each represented by a single manifold..

Example

gap> invariantl:=function(m) ;
> return List([1..3],k->Homology(m,k));
> end;;
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gap> C:=Classify(Manifolds,invariantl);;

gap> invariant2:=function(m)

local L;

L:=FundamentalGroup (m) ;

if GeneratorsOfGroup(L)= [] then return [];fi;
L:=LowIndexSubgroupsFpGroup(L,5);
L:=List(L,AbelianInvariants);
L:=SortedList (L) ;

return L;

end;;

V V.V V V V V V

gap> D:=RefineClassification(C,invariant2);;

gap> List(D,Size);

[ 40, 2, 10, 15, 8, 6, 2, 6, 2, 5, 7, 1, 4, 11, 7, 7, 10, 4, 4, 2, 1, 3, 1,
1, 4]

The next commands construct a list of 18 orientable cube manifolds and a list of 7 non-orientable
cube manifolds.

Example
gap> Manifolds:=List(D,x->x[1]);;

gap> OrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[0]);;
gap> NonOrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[1);;
gap> Length(OrientableManifolds);

18

gap> Length(NonOrientableManifolds);

7

The next commands show that the 7 non-orientable cube manifolds all have infinite fundamental
groups.

Example
gap> List(NonOrientableManifolds,m->IsFinite(FundamentalGroup(m)));
[ false, false, false, false, false, false, false ]

The final commands show that (at least) 9 of the orientable manifolds have finite fundamental groups
and list the isomorphism types of these finite groups. Note that it is now known that any closed
3-manifold with finite fundamental group is spherical (i.e. is a quotient of the 3-sphere). Spherical

manifolds with cyclic fundamental group are, by definition, lens spaces.

Example

gap> List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m->
IsFinite (FundamentalGroup(m))) ;

[ true, true, true, true, true, true, true, true, true ]

gap> List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m->
StructureDescription(FundamentalGroup(m))) ;
[ "Q8"’ IIC2II’ IIC4II’ IIC3 . C4l|, llCl2ll’ IIC8II’ IIC14", "Cs", lllll ]
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4.10.1 Face pairings for 25 distinct cube manifolds

56

The following are the face pairings of 25 non-homeomorphic cube manifolds, with vertices of the

cube numbered as describe above.

Example
gap> for i in [1..25] do

> p:=Manifolds[i]!.cubeFacePairings;

> Print("Manifold ",i," has face pairings:\n");

> Print(p[1],"\n",p[2],"\n",p[3],"\n");

> Print ("Fundamental group is: ");

>if i in [ 1, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25 ] then
> Print (StructureDescription(FundamentalGroup(Manifolds[i])),"\n");
> else Print("infinite non-cyclic\n"); fi;

> if Homology(Manifolds[i],3)=[0] then Print("Orientable, ");

> else Print("Non orientable, "); fi;

> Print(ManifoldType (Manifolds[i]),"\n");

> for x in Manifolds[i]!.edgeDegrees do

> Print(x[2]," edges of \"degree\" ",x[1],", ");

> od;

> Print("\n\n") ;

> od;

Manifold 1 has face pairings:
tr1,5,6,21, [3,7,8,4
([(1,2,3,41,[5,8,7,6
([1,4,8,51,0[3,2,6,7
Fundamental group is: Z

1]

11

, 711

x C2

Non orientable, other

4 edges of "degree" 2, 4 edges of '"degree" 4,

Manifold 2 has face pairings:

(l1,5,6,21,[7,8,4,31]1

(C1,2,3,41,[1,5,8,41]1

(5,8 7,61, [7,6,2, 3711

Fundamental group is: infinite non-cyclic

Non orientable, other

2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,

Manifold 3 has face pairings:

(rl1,5,6,21,[03,7,8,41]1
(f1,2,3,41,[5,6, 7,811
([1,4,8,51,[2,3,7,61]1

Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of '"degree" 4,

Manifold 4 has face pairings:
([1,5,6,21,[3,7,8,41]1
(l1,2,3,41,[5,6,7,81]1
([l1,4,8,51,[6,7,3,21]1
Fundamental group is: infinite non-cyclic
Non orientable, euclidean

6 edges of '"degree" 4,
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Manifold 5 has face pairings:

([1,5,6,21,[3,7,8,41]1
(01,23, 41, [6,5,8, 711
([(1,4,8,5]1,[2,6,7,31]1]1

Fundamental group is:

infinite non-cyclic

Non orientable, euclidean

6 edges of '"degree" 4,

Manifold 6 has face pairings:

(l1,5,6,21,[3,4,58,71]1]
(rl1,2,3,41,[5,6,7,81]1
[[C1,4,28,5]1,[2,3,7,61]1

Fundamental group is:
Orientable, euclidean
6 edges of "degree" 4,

infinite non-cyclic

Manifold 7 has face pairings:

(l1,5,6,21,[7,3,4,81]1
[C1,2,3,41,[1,5,8,41]1
(5,8, 7,61, [7,6,2,3]1]1]

Fundamental group is:
Orientable, other
2 edges of "degree" 1,

infinite non-cyclic

2 edges of '"degree" 3,

Manifold 8 has face pairings:

(rl1,5,6,21,03,4,8,71]1
(01,23, 41, [7,8,5,61]1
([1,4,8,5]1,[7,6,2,31]

Fundamental group is:
Orientable, other
4 edges of "degree" 2,

Manifold 9 has face p
([1,5,6,21, [3,
([1,2,3,41, [8,
([1,4,8,51, [6,
Fundamental group is:

Orientable, spherical
8 edges of "degree" 3,

infinite non-cyclic

2 edges of '"degree" 8,

irings:
4,8, 7171
5,6, 711
2,3, 711
Q8

Manifold 10 has face pairings:

([1,5,6,21, [4,
(l01,2,3,41,[7,
[LC1, 4,8,51,([7,
Fundamental group is:
Orientable, other

4 edges of "degree" 2,

8, 7,311
8, 5,611
6, 2, 311
infinite non-cyclic

4 edges of "degree" 4,

Manifold 11 has face pairings:

([1,5,6,21, [4,
[[1, 2’ 3,4]9[5’

3,7,

811
6, 7,811

2 edges of '"degree" 8,
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(Cl1,4,8,51,[02,3,7,61]1
Fundamental group is: infinite non-cyclic
Non orientable, euclidean

6 edges of "degree" 4,

Manifold 12 has face pairings:
(l1,5,6,21, [4,8,7,
(C1,2,3,41, 0[5, 6,7,
(C1,4,8,51,[2, 3,7,
Fundamental group is: Z x Z
Orientable, euclidean

6 edges of '"degree" 4,

M O 0 W
N
[ R T R

Manifold 13 has face pairings:
[[1,5,6,21,[4,28,7,31]1
(l1,2,3,41,[5,6, 7,811

(C1, 4,8, 51, [7,6,2,31]1]
Fundamental group is: infinite non-cyclic
Orientable, euclidean

6 edges of "degree" 4,

Manifold 14 has face pairings:

(Cf1,5,6,21,[7,3,4,81]1
(r1,2, 3 41, [7,8,5,61]1
([1,4,8 51, [7,6,2,3]1]1
Fundamental group is: C2
Orientable, spherical

12 edges of '"degree" 2,

Manifold 15 has face pairings:
(C1,5,6,21,[3,7,8,41]1
(l1,2,3,41,[1,5,58,4171]1
(s 8, 7,61, [2,3,7,61]1
Fundamental group is: Z

Non orientable, other

4 edges of "degree" 1, 2 edges of '"degree" 2,

Manifold 16 has face pairings:

(01,5,6,21]1,[3,4,8,71]1
([1,2,3,41,[1,5,8,41]1
(5, 8, 7,61, [2,3,7,61]1
Fundamental group is: Z

Orientable, other

4 edges of '"degree" 1, 2 edges of '"degree" 2,

Manifold 17 has face pairings:

(C01,5,6,21,0[3,4,8,71]1
[[1,2,3,41,[1,5,8,41]1]
([(5 8, 7,61, [3,7,6,21]1

Fundamental group is: C4
Orientable, spherical

2 edges of "degree" 1, 2 edges of '"degree" 3,

2 edges of "degree" 8,

2 edges of '"degree" 8,

2 edges of "degree" 8,
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Manifold 18 has face pairings:

(C1,5,6,21,[3,4,8,71]1
[[1,2’3,4]’[8’4,1’5]]
(C5 8, 7,61, [6,2,3,71]1

Fundamental group is: C3 : C4
Orientable, spherical

2 edges of '"degree" 2, 4 edges of "degree" 5,

Manifold 19 has face pairings:

(rl1,5,6,21,03,4,8,71]1
[[132)394])[8)431)5]]
(rs,8, 7,61, [3,7,6,21]1

Fundamental group is: C12
Orientable, spherical

2 edges of '"degree" 2, 2 edges of "degree" 3,

Manifold 20 has face pairings:
6

(C1,5,6,21,[3,4,8,71]1
[[1,2’3,4]’[5’8,4’1]]
(05 8, 7,61, [3,7,6,21]1

Fundamental group is: C8
Orientable, spherical
8 edges of "degree" 3,

Manifold 21 has face pairings:

(r1,5,6,21,[07,3,4,81]
(C01,2,3,41,[8,4,1,51]]1
(5,8 7,61, [7,6,2,31]1

Fundamental group is: infinite non-cyclic

Orientable, euclidean
6 edges of "degree" 4,

Manifold 22 has face pairings:

(Cl1,5,6,2]1,[5,6,7,81]1]
(03, 7,841, [7,6,2,31]1
([01,2,3,41,0[8,4,1,5171]1

Fundamental group is: C14
Orientable, spherical

2 edges of '"degree" 2, 4 edges of "degree" 5,

Manifold 23 has face pairings:
6

(l1,5,6,2]1,[5,6,7,81]
[[33 7) 894]) [7) 63 2)3]]
(01,233,471, [5,8,4,11]1]

Fundamental group is: C6
Orientable, spherical

6 edges of '"degree" 2, 2 edges of "degree" 6,

Manifold 24 has face pairings:
(l1,5,6,21,[7,8,5,61]1
(03, 7,8,41,[2,3 611

> > B

2 edges of '"degree" 7,
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(r01,2,3,41,04,1,5,81]1
Fundamental group is: infinite non-cyclic
Orientable, euclidean

6 edges of "degree" 4,

Manifold 25 has face pairings:
(f1,5,6,21,[06,7,8,5
([3,7,8,41,[3,7,6,2
1, 5, 8, 4

1

—_
—_

([1,2,3,41, [

Fundamental group is:
Orientable, spherical
4 edges of "degree" 1, 4 edges of '"degree" 5,

> > B

4.10.2 Platonic cube manifolds

A platonic solid is a convex, regular polyhedron in 3-dimensional euclidean E? or spherical S* or
hyperbolic space H>. Being regular means that all edges are congruent, all faces are congruent, all
angles between adjacent edges in a face are congruent, all dihedral angles between adjacent faces are
congruent. A platonic cube in euclidean space has six congruent square faces with diherdral angle
m/2. A platonic cube in spherical space has dihedral angles 27r/3. A platonic cube in hyperbolic
space has dihedral angles 27 /5. This can alternatively be expressed by saying that in a tessellation of
[E3 by platonic cubes each edge is adjacent to 4 square faces. In a tessellation of S* by platonic cubes
each edge is adjacent to 3 square faces. In a tessellation of H? by platonic cubes each edge is adjacent
to 5 five square faces.

Any cube manifold M induces a cubical CW-decomposition of its universal cover M. We say that
M is a platonic cube manifold if every edge in M is adjacent to 4 faces in the euclidean case M=TE3is
adjacent to 3 faces in the spherical case M=S3is adjacent to 5 faces in the hyperbolic case M =H5.

In the above list of 25 cube manifolds we see that the euclidean manifolds 3, 4, 5, 6, 11 are platonic
and that the spherical manifolds 9, 20 are platonic.

4.11 There are at most 41 distinct cube manifolds

Using the Simpcomp package for GAP we can show that many of the 163 cube manifolds constructed
above are homeomorphic. We do this by showing that barycentric subdivisions of many of the mani-
folds are combinatorially the same.

The following commands establish homeomorphisms (simplicial complex isomorphisms) between
manifolds in each equivalence class D[i] above for 1 <i < 25, and then discard all but one manifold
in each homeomorphism class. We are left with 59 cube manifolds, some of which may be homeo-
morphic, representing at least 25 distinct homeomorphism classes. The 59 manifolds are stored in the
list DD of length 25 each of whose terms is a list of cube manifolds.

Example

gap> LoadPackage ("Simpcomp");;

gap> inv3:=function(m)

> local K;

> K:=BarycentricSubdivision(m) ;

> K:=MaximalSimplicesO0fSimplicialComplex(K) ;
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> K:=SC(K);

> if not SCIsStronglyConnected(K) then Print("WARNING!\n"); fi;
> return SCExportIsoSig( K );

> end;

function( m ) ... end

gap> DD:=[];;

gap> for x in D do

> y:=Classify(x,inv3);

> Add(DD,List(y,z->z[1]));
> od;

gap> List(DD,Size);
(9,1,3,3,3,1,1,1,1,1,2,1,2,7,4,4,3,1,1,1,1,3,1,1, 3]

The function PoincareCubeCWCompex () applies cell simplifications in its construction of the quo-
tient of a CW-complex. A variant PoincareCubeCWCompexNS() performs no cell simplifications
and thus returns a bigger cell complex which we can attempt to use to establish further homeomor-
phisms. This is done in the following session and succeeds in showing that there are at most 51 distinct
homeomorphism types of cube manifolds.

Example
gap> DD:=List(DD,x->List (x,y->PoincareCubeCWComplexNS(
> y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;

gap> D:=[1;;

gap> for x in DD do

> y:=Classify(x,inv3);

> Add(D,List(y,z->z[11));
>od; ;

gap> List(D,Size);
(8,1,3,3,2,1,1,1,1,1,2,1,2,4,4,4,3,1,1,1,1,1,1,1, 2]

Making further modifications to the cell structures of the manifolds that leave their homeomorphism
types unchanged can help to identify further simplicial isomorphisms between barycentric subdivi-
sions. For instance, the following commands succeed in establishing that there are at most 45 distinct
homeomorphism types of cube manifolds.

Example
gap> DD:=[];;

gap> for x in D do

> if Length(x)>1 then

Add (DD, List(x,y->BarycentricallySimplifiedComplex(y)));
else Add(DD,x);

fi;

od;

gap> D:=[1;;

V V V V

gap> for x in DD do
> y:=Classify(x,inv3);
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> Add(D,List(y,z->z[11));
> od;

gap> List(D,Size);
rr,1,3,3,2,1,1,1,1,1, 2,1, 2,2,3,3,3,1,1, 1,1, 1, 1,1, 21

gap> DD:=List(D,x->List(x,y->PoincareCubeCWComplexNS (
> y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;

gap> D1:=[];;

gap> for x in DD do

> if Length(x)>1 then
Add (D1, List(x,y->BarycentricallySimplifiedComplex(RegularCWComplex (BarycentricS
else Add(D1,x);
fi;

od;

vV V V V

gap> DD:=[];;

gap> for x in D1 do

> y:=Classify(x,inv3);

> Add(DD,List(y,z->z[1]));
> od;;

gap> Print(List(DD,Size),"\n");
(6,1,3,3,2,1,1,1,1,1,2,1,2,2,3,3,3,1,1,1,1,1,1,1, 2]

The two manifolds in DD[14] have fundamental group C, and are thus lens spaces. There is
only one homeomorphism class of such lens spaces and so these two manifolds are homeomorphic.
The three manifolds in DD[17] are lens spaces with fundamental group Cs. Again, there is only
one homeomorphism class of such lens spaces and so these three manifolds are homeomorphic. The
two manifolds in DD[25] have trivial fundamental group and are hence both homeomorphic to the
3-sphere. These observations mean that there are at most 41 closed manifolds arising from a cube by
identifying the cube’s faces pairwise.

These observations can be incorporated into our list DD of equivalence classes of manifolds as
follows.

ubdivision(y)):

Example
gap> DD[14]:=DD[14]1{[1]};;

gap> DD[17]:=DD[171{[1]};;

gap> DD[25]:=DD[25]{[11};;

gap> List(DD,Size);
[6,1,3,3,2,1,1,1,1,1,2,1,2,1,3,3,1,1,1,1,1,1, 1,1, 1]

4.12 There are precisely 18 orientable cube manifolds, of which 9 are
spherical and 5 are euclidean

The following commands show that there are at least 18 and at most 21 orientable cube manifolds.
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Example
gap> DDorient:=Filtered(DD,x->Homology(x[1],3)=[0]);;
gap> List(DDorient,Size);

r+ 1, 1,1,1,1, 2,1, 3, 1,1, 1,1, 1,1, 1,1, 1]

The next commands show that the fundamental groups of the two manifolds in DDorient[7] are iso-
morphic to Z X Z : Z, and that the fundamental groups of the three manifolds in DDorient[9] are
isomorphic to Z.

Example
gap> gl:=FundamentalGroup(DDorient [7][1]);;
gap> g2:=FundamentalGroup(DDorient [7][2]);;
gap> RelatorsOfFpGroup(gl);

[ £17-1*f2+f1%f2~-1, £3~-1*f1*f3*f1, £3~-1*f2"-1%f3*f2"-1 ]
gap> Relators0fFpGroup(g2);

[ f1xf2+f1~-1%f2~-1, £1~-1%f3*f1~-1%f3~-1, £3*f24f3~-1%f2 ]

gap> hl:=FundamentalGroup(DDorient[9] [1]);;
gap> h2:=FundamentalGroup(DDorient[9] [2]);;
gap> h3:=FundamentalGroup(DDorient[9] [3]);;
gap> StructureDescription(hl);

’|Z"

gap> StructureDescription(h2);

llzll

gap> StructureDescription(h3);

llzll

Since neither Z x Z : Z nor Z is a free product of two non-trivial groups we conclude that the manifolds
in DDorient[7] and DDorient[9] are prime. Since oriented prime 3-manifolds are determined up to
homeomorphism by their fundamental groups we can conclude that there are precisely 18 orientable
closed manifolds arising from a cube by identifying the cube’s faces pairwise.

A compact 3-manifold M is spherical if it is of the form M = §3 /T where I is a finite group acting
freely as rotations on S°. The fundamental group of M is then the finite group I'. Perelmen showed
that a compact 3-manifold is spherical if and only if its fundamental group is finite.

A compact 3-manifold is euclidean if it is of the form M = R3/T" where I is a group of affine
transformations acting freely on R?. The fundamental group is then I" and is called a Bieberbach group
of dimension 3. It can be shown that a group I is isomorphic to a Bieberbach group of dimension 7 if
and only if there is a short exact sequence Z" — I' — P with P a finite group.

The following command establishes that there are precisely 9 orientable spherical manifolds and
5 closed orientable euclidean manifolds arising from pairwise identifications of the faces of the cube.

Example
gap> List(OrientableManifolds,ManifoldType) ;
[ "euclidean", "other", "other", "spherical", "other", "euclidean",
"euclidean", "spherical", "other", "spherical", "spherical", "spherical",

"spherical", "euclidean", "spherical", "spherical", "euclidean", "spherical" ]
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4.13 Cube manifolds with boundary

If a space Y obtained from identifying faces of the cube fails to be a manifold then it fails because one
or more vertices of Y fail to have a spherical link. By using barycentric subdivision if necessary, we
can ensure that the stars of any two non-manifold vertices of Y have trivial intersection. Removing

the stars of the non-manifold vertices from Y yields a 3-manifold with boundary Y.

The following commands show that there are 367 combinatorially different regular
CW-complexes Y that arise by identifying faces of a cube in pairs and which fail to be manifolds.
The commands also show that these spaces give rise to at least 180 non-homeomorphic manifolds ¥

with boundary.

Example
gap> Al:= [ [1,2], [3,4], [5,6] 1;;

gap> A2:=[ [1,2], [3,5], [4,6] 1;;

gap> A3:=[ [1,4], [2,6], [3,5] 1;;

gap> D8:=DihedralGroup(IsPermGroup,8);;

gap> NonManifolds:=[];;

gap> for A in [A1,A2,A3] do

> for x in D8 do

for y in D8 do

for z in D8 do

G:=[x,y,2];
F:=PoincareCubeCWComplex (A,G) ;
b:=IsClosedManifold(F);

if b=false then Add(NonManifolds,F); fi;
od;od;od;od;

V V V V V V V

gap> D:=Classify(NonManifolds,inv3); #See above for inv3
gap> D:=List(D,x->x[1]);;

gap> Size(D);

367

gap> M:=List(D,ThreeManifoldWithBoundary);;

gap> C:=Classify(M,invariantl);; #See above for invariantil

gap> List(C,Size);

[ 33, 13, 3, 18, 21, 7, 6, 13, 51, 2, 1, 15, 11, 11, 1, 35, 2, 2, 6, 15,
17, 2, 3, 2, 14, 17, 3, 1, 25, 8, 4, 1, 4]

gap> invb:=function(m)

local B;

> B:=Boundary0fPureRegularCWComplex(m) ;;
> return invariant1(B);

> end;;

\2

gap> CC:=RefineClassification(C,inv5);;

gap> List(CC,Size);

[ 25, 5, 3, 5, 4, 4, 2, 1, 11
6, 40, 1, 2, 1, 11, 4, 5, 3
2, 15, 2, 3, 2, 14, 17,

N
-
(Y
.
[E_
M
Do
-
~ -
.
[EG
S
-
(o8}
-
w
.
—
M
—
M
N
| ST

gap> CC:=RefineClassification(CC,invariant2);;
gap> List(CC,Size);
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r+ 1,1, 1,1, ¢, ¢, ¢, ¢, ¢, 1,1,1,12,1,1,1,1, 1,1, 1,1, 1,1,
1,1, 1,1,1,1,1,1,1,2,2,1,3,1,1,2,1, 2,1, 4, 2, 3, 2, 3,
4, 3, 2,1,1, 3,2, 4,23,1,1,5,1,1,3,1,1,1, 13, 3, 1, 4, 2, 1,
2,2,3,3,3,4,4,2,4,4,4,4,1,2,1,1,1,1,1,1, 1,1, 1, 1,
1,1, 1,1,1,1,3,1,1,1,2,1,1,1,1,1,1,1, 1,1, 1,1, 1, 1,
1, 1, 1,1, 2, 3, 4, 3,1, 2, 3, 2,3, 4,3,3,2,2,1,1, 2,1, 1, 2,
1,1,1,2,1,1,1,1,1,1,1,1, 2, 10, 5, 2, 3, 2, 14, 17, 1, 1, 1,
1, 4,5, 2,9,1,4, 7,1, 3,1, 1, 41

gap> Length(CC);

180

4.14 Octahedral manifolds

The above construction of 3-manifolds as quotients of a cube can be extended to other poly-
topes. A polytope of particular interest, and one that appears several times in the clas-
sic book on Three-Manifolds by William Thurston [Thu02], is the octahedron. The function
PoincareOctahahedronCWComplex () can be used to construct any 3-dimensional CW-complex
arising from an octahedron by identifying the eight faces pairwise; the vertices and faces of the octa-
hedron are numbered as follows.

The following commands construct a spherical 3-manifold Y with fundamental group equal to the
binary tetrahedral group G. The commands then use the universal cover of this manifold to construct
the first four terms of a free periodic ZG-resolution of Z of period 4. The resolution has one free
generator in dimensions 4n and 4n+- 3 for n > 0. It has two free generators in dimensions 4n+ 1 and
4n+2.

Example
gap> L:=[ [ 1, 4,51, [ 2,6, 3]1;;
gap> M:=[ [ 3, 4, 51, [ 6, 1,21 1;;
gap> N:=[ [ 2, 3,561, [6, 4, 11 1;;
gap> P:=[ [ 1, 2,51, [6, 3,41 1;;

gap> Y:=PoincareOctahedronCWComplex(L,M,N,P);;
gap> IsClosedManifold(Y);
true

gap> G:=FundamentalGroup(Y);;
gap> StructureDescription(G);
"SL(2,3) n

gap> R:=ChainComplex0fUniversalCover(Y);
Equivariant chain complex of dimension 3

gap> List([0..3],R!.dimension);
[ 1’ 2, 2’ 1 ]

4.15 Dodecahedral manifolds

Another polytope of interest, and one that can be used to construct the Poincare homology sphere,
is the dodecahedron. The function PoincareDodecahedronCWComplex () can be used to construct



A newer HAP tutorial

66

any 3-dimensional CW -complex arising from a dodecahedron by identifying the 12 pentagonal faces

pairwise; the vertices of the prism are numbered as follows.

The following commands construct the Poincare homology 3-sphere (with fundamental group

equal to the binary icosahedral group of order 120).
Example

gap> Y:=PoincareDodecahedronCWComplex (
> [[1,2,3,4,5],[6,7,8,9,10]],
(f1,11,16,12,2],[19,9,8,18,14]],
((2,12,17,13,3]1,[20,10,9,19,15]11,
[(3,13,18,14,4],[16,6,10,20,11]],
([4,14,19,15,5],[17,7,6,16,12]],
[(5,15,20,11,11,[18,8,7,17,1311);
Regular CW-complex of dimension 3

gap> IsClosedManifold(Y);

true

gap> List ([0..3],n->Homology(Y,n));
tftol, 1,01, C001]1

gap> StructureDescription(FundamentalGroup(Y));
"SL(2,5)"

\

vV V V V

The following commands construct Seifert- Weber space, a rational homology sphere.

Example

gap> W:=PoincareDodecahedronCWComplex (
> [[1,2,3,4,5],[7,8,9,10,6]1],
(f1,11,16,12,21,[9,8,18,14,19]11,
[(2,12,17,13,3],[10,9,19,15,20]1],
[[3,13,18,14,4],[6,10,20,11,16]1],
[[4,14,19,15,5],[7,6,16,12,171],
[(5,15,20,11,11,[8,7,17,13,1811);
Regular CW-complex of dimension 3
gap> IsClosedManifold(W);

true

gap> List([0..3],n->Homology(W,n)) ;
(fol, [5,5,51, [ 1, [01]

Vv

vV V V V

4.16 Prism manifolds

Another polytope of interest is the prism constructed as the direct product D,, x [0,1] of an n-gonal
disk D,, with the unit interval. The function PoincarePrismCWComplex () can be used to construct
any 3-dimensional CW-complex arising from a prism with even n > 4 by identifying the n+ 2 faces

pairwise; the vertices of the prism are numbered as follows.

The case n = 4 is that of a cube. The following commands construct a manifold Y arising from
a hexagonal prism (n = 6) with fundamental group m;Y = Cs x Q3> equal to the direct product of the

cyclic group of order 5 and the quaternion group of order 32.

Example
gap> L:=[[1,2,3,4,5,6]1,[11,12,7,8,9,1011;;
gap> M:=[[1,7,8,2],[4,5,11,101]1;;

gap> N:=[[2,8,9,3],[6,1,7,12]11;;



A newer HAP tutorial 67

gap> P:=[[3,9,10,4]1,[6,12,11,51];;

gap> Y:=PoincarePrismCWComplex (L,M,N,P);;
gap> IsClosedManifold(Y);

true

gap> G:=FundamentalGroup(Y);;

gap> StructureDescription(G);

"C5 x Q32"

An exhaustive search through all manifolds constructed from a hexagonal prism by identify faces
pairwise shows that the finite groups arising as fundamental groups are precisely: Qg, Q16, C4, C3 : C4,
Cs : Cy4, Cg, Cig, Cr2, Cop, Ca, Cg, C3 X O3, C3 X Q16, C5 X O3p. Each of these finite groups G = mY
is either cyclic (in which case the corresponding manifold is a lens space) or else has the propert
that G/Z(G) is dihedral (in which case the corresponding manifold is called a prism manifold). The
majority of the manifolds arising from a hexagonal prism have infinite fundamental group.

Infinite families of spherical 3-maniolds can be constructed from the infinite family of prisms.
For instance, a prism manifold which we denote by P, can be obtained from a prism Dy, x [0, 1] by
identifying the left and right side under a twist of 7/r, and identifying opposite square faces under
a twist of /2. Its fundamental group m; P, is the binary dihedral group of order 4r. The following
commands construct P, for r = 3.

Example
gap> L:=[[1,2,3,4,5,6],[8,9,10,11,12,711;;
gap> M:=[[1,7,8,2],[11,10,4,51]1;;

gap> N:=[[2,8,9,3],[12,11,5,6]1]1;;

gap> P:=[[3,9,10,4]1,[7,12,6,11]1;;

gap> Y:=PoincarePrismCWComplex(L,M,N,P);;
gap> IsClosedManifold(Y);

true
gap> StructureDescription(FundamentalGroup(Y));
"C3 : C4"

4.17 Bipyramid manifolds

Yet another polytope of interest is the bipyramid constructed as the suspension of an n-gonal disk
D,. The function PoincareBipyramidCWComplex () can be used to construct any 3-dimensional
CW-complex arising from a bipyramid with n > 3 by identifying the 2n faces pairwise; the vertices
of the prism are numbered as follows.

For n = 4 the bipyramid is the octahedron.



Chapter 5

Topological data analysis

5.1 Persistent homology

Pairwise distances between 74 points from some metric space have been recorded and stored in a
74 x 74 matrix D. The following commands load the matrix, construct a filtration of length 100 on the
first two dimensions of the assotiated clique complex (also known as the Vietoris-Rips Complex), and
display the resulting degree O persistent homology as a barcode. A single bar with label n denotes n

bars with common starting point and common end point.
Example

gap> file:=HapFile("data253a.txt");;
gap> Read(file);

gap> G:=SymmetricMatrixToFilteredGraph(D,100);
Filtered graph on 74 vertices.

gap> K:=FilteredRegularCWComplex (CliqueComplex(G,2));
Filtered regular CW-complex of dimension 2

gap> P:=PersistentBettiNumbers(K,0);;
gap> BarCodeCompactDisplay (P);

The first 54 terms in the filtration each have 74 path components -- one for each point in the
sample. During the next 9 filtration terms the number of path components reduces, meaning that
sample points begin to coalesce due to the formation of edges in the simplicial complexes. Then, two
path components persist over an interval of 18 filtration terms, before they eventually coalesce.

The next commands display the resulting degree 1 persistent homology as a barcode.
Example
gap> P:=PersistentBettiNumbers(K,1);;

gap> BarCodeCompactDisplay (P);

Interpreting short bars as noise, we see for instance that the 65th term in the filtration could be
regarded as noiseless and belonging to a "stable interval" in the filtration with regards to first and
second homology functors. The following command displays (up to homotopy) the 1 skeleton of the
simplicial complex arizing as the 65-th term in the filtration on the clique complex.

68
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Example

gap> Y:=FiltrationTerm(X,65);
Regular CW-complex of dimension 1

gap> Display (HomotopyGraph(Y));

These computations suggest that the dataset contains two persistent path components (or clusters),
and that each path component is in some sense periodic. The final command displays one possible
representation of the data as points on two circles.

5.1.1 Background to the data

Each point in the dataset was an image consisting of 732 x 761 pixels. This point was regarded as
a vector in R>7052 = R732x761 apd the matrix D was constructed using the Euclidean metric. The
images were the following:

5.2 Mapper clustering

The following example reads in a set S of vectors of rational numbers. It uses the Euclidean distance
d(u,v) between vectors. It fixes some vector ug € S and uses the associated function f:D — [0,b] C
R, v+ d(ug,v). In addition, it uses an open cover of the interval [0,b] consisting of 100 uniformly
distributed overlapping open subintervals of radius r = 29. It also uses a simple clustering algorithm
implemented in the function cluster.

These ingredients are input into the Mapper clustering procedure to produce a simplicial complex
M which is intended to be a representation of the data. The complex M is 1-dimensional and the final
command uses GraphViz software to visualize the graph. The nodes of this simplicial complex are
"buckets" containing data points. A data point may reside in several buckets. The number of points in
the bucket determines the size of the node. Two nodes are connected by an edge when they contain

common data points.
Example

gap> file:=HapFile("datal34.txt");;
gap> Read(file);
gap> dx:=EuclideanApproximatedMetric;;
gap> dz:=EuclideanApproximatedMetric;;
gap> L:=List(S,x->Maximum(List(S,y->dx(x,y))));;
gap> n:=Position(L,Minimum(L)) ;;
gap> f:=function(x); return [dx(S[n],x)]; end;;
gap> P:=30%[0..100];; P:=List(P, i->[il);;
gap> r:=29;;
gap> epsilon:=75;;
gap> cluster:=function(S)

> local Y, P, C;

if Length(S)=0 then return S; fi;
Y:=VectorsToOneSkeleton(S,epsilon,dx) ;
P:=PiZero(Y);
C:=Classify([1..Length(S)],P[2]);

return List(C,x->S{x});
end;;

V V. V V V V
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gap> M:=Mapper(S,dx,f,dz,P,r,cluster);
Simplicial complex of dimension 1.

gap> Display (GraphOfSimplicialComplex(M));

5.2.1 Background to the data

The datacloud S consists of the 400 points in the plane shown in the following picture.

5.3 Some tools for handling pure complexes

A CW-complex X is said to be pure if all of its top-dimensional cells have a common dimension.
There are instances where such a space X provides a convenient ambient space whose subspaces can be
used to model experimental data. For instance, the plane X = R? admits a pure regular CW -structure
whose 2-cells are open unit squares with integer coordinate vertices. An alternative, and sometimes
preferrable, pure regular CW-structure on R? is one where the 2-cells are all reguar hexagons with
sides of unit length. Any digital image can be thresholded to produce a black-white image and this
black-white image can naturally be regared as a finite pure cellular subcomplex of either of the two
proposed CW -structures on R?. Analogously, thresholding can be used to represent 3-dimensional
greyscale images as finite pure cellular subspaces of cubical or permutahedral CW -structures on R3,
and to represent RGB colour photographs as analogous subcomplexes of R>.

In this section we list a few functions for performing basic operations on n-dimensional pure
cubical and pure permutahedral finite subcomplexes M of X = R". We refer to M simply as a pure
complex. In subsequent sections we demonstrate how these few functions on pure complexes allow
for in-depth analysis of experimental data.

(ASIDE. The basic operations could equally well be implemented for other CW -decompositions
of X = IR" such as the regular CW-decompositions arising as the tessellations by a fundamental do-
main of a Bieberbach group (=torsion free crytallographic group). Moreover, the basic operations
could also be implemented for other manifolds such as an n-torus X = S' x §! x --- x S! or n-sphere
X = §" or for X the universal cover of some interesting hyperbolic 3-manifold. An example use of the
ambient manifold X = S' x S! x S! could be for the construction of a cellular subspace recording the
time of day, day of week and week of the year of crimes committed in a population.)

BASIC OPERATIONS RETURNING PURE COMPLEXES. ( Function descriptions available here.)

* PureCubicalComplex(binary array)

* PurePermutahedralComplex(binary array)

* ReadImageAsPureCubicalComplex(file,threshold)

* ReadImageSquenceAsPureCubicalComplex(file,threshold)
* PureComplexBoundary (M)

* PureComplexComplement (M)

* PureComplexRandomCell (M)
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* PureComplexThickened (M)

* ContractedComplex (M, optional subcomplex of M)

* ExpandedComplex (M, optional supercomplex of M)

* PureComplexUnion(M,N)

* PureComplexIntersection(M,N)

* PureComplexDifference (M,N)

e FiltrationTerm(F,n)

BASIC OPERATIONS RETURNING FILTERED PURE COMPLEXES.
* PureComplexThickeningFiltration(M,length)

* ReadImageAsFilteredPureCubicalComplex(file,length)

5.4 Digital image analysis and persistent homology

The following example reads in a digital image as a filtered pure cubical complexex. The filtration
is obtained by thresholding at a sequence of uniformly spaced values on the greyscale range. The
persistent homology of this filtered complex is calculated in degrees O and 1 and displayed as two
barcodes.

Example
gap> file:=HapFile("imagel.3.2.png");;

gap> F:=ReadImageAsFilteredPureCubicalComplex(file,40);
Filtered pure cubical complex of dimension 2.

gap> P:=PersistentBettiNumbers(F,0);;

gap> BarCodeCompactDisplay (P) ;

Example
gap> P:=PersistentBettiNumbers(F,1);;
gap> BarCodeCompactDisplay (P);

The 20 persistent bars in the degree 0 barcode suggest that the image has 20 objects. The degree 1
barcode suggests that there are 14 (or possibly 17) holes in these 20 objects.

5.4.1 Naive example of image segmentation by automatic thresholding

Assuming that short bars and isolated points in the barcodes represent noise while long bars represent
essential features, a "noiseless" representation of the image should correspond to a term in the filtration
corresponding to a column in the barcode incident with all the long bars but incident with no short
bars or isolated points. There is no noiseless term in the above filtration of length 40. However
(in conjunction with the next subsection) the following commands confirm that the 64th term in the
filtration of length 500 is such a term and display this term as a binary image.
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Example
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,500);;
gap> Y:=FiltrationTerm(F,64);

Pure cubical complex of dimension 2.

gap> BettiNumber(Y,0);

20

gap> BettiNumber(Y,1);

14

gap> Display(Y);

5.4.2 Refining the filtration

The first filtration for the image has 40 terms. One may wish to investigate a filtration with more terms,
say 500 terms, with a view to analysing, say, those 1-cycles that are born by term 25 of the filtration
and that die between terms 50 and 60. The following commands produce the relevant barcode showing

that there is precisely one such 1-cycle.

Example
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,500) ;;
gap> L:=[20,60,61,62,63,64,65,66,67,68,69,70];;

gap> T:=FiltrationTerms(F,L);;

gap> PO:=PersistentBettiNumbers(T,0);;

gap> BarCodeCompactDisplay (PO) ;

gap> P1l:=PersistentBettiNumbers(T,1);;

gap> BarCodeCompactDisplay (P1);

Bo:
Bi:

5.4.3 Background to the data

The following image was used in the example.

5.5 A second example of digital image segmentation

In order to automatically count the number of coins in this picture

we can load the image as a filtered pure cubical complex F of filtration length 40 say, and observe
the degree zero persistent Betti numbers to establish that the 28-th term or so of F' seems to be ’noise
free’ in degree zero. We can then set M equal to the 28-th term of F' and thicken M a couple of times
say to remove any tiny holes it may have. We can then construct the complement C of M. Then we
can construct a 'neighbourhood thickening’ filtration 7" of C with say 50 consecutive thickenings. The
degree one persistent barcode for T has 24 long bars, suggesting that the original picture consists of
24 coins.

Example
gap> F:=ReadImageAsFilteredPureCubicalComplex("my_coins.png",40);;
gap> M:=FiltrationTerm(F,24);; #Chosen after viewing degree O barcode for F

gap> M:=PureComplexThickened(M);;
gap> M:=PureComplexThickened(M);;
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gap> C:=PureComplexComplement (M) ;;
gap> T:=ThickeningFiltration(C,50);;
gap> P:=PersistentBettiNumbers(T,1);;
gap> BarCodeCompactDisplay (P) ;

The pure cubical complex W:=PureComplexComplement (FiltrationTerm(T,25)) has the cor-
rect number of path components, namely 25, but its path components are very much subsets of the
regions in the image corresponding to coins. The complex W can be thickened repeatedly, subject to
no two path components being allowed to merge, in order to obtain a more realistic image segmenta-
tion with path components corresponding more closely to coins. This is done in the follow commands
which use a makeshift function Basins (L) available here. The commands essentially implement a
standard watershed segmentation algorithm but do so by using the language of filtered pure cubical
complexes.

Example
gap> W:=PureComplexComplement (FiltrationTerm(T,25));;
gap> L:=[1;;

gap> for i in [1..PathComponentOfPureComplex(W,0)] do
gap> P:=PathComponentOfPureComplex(W,1i);;

gap> Q:=ThickeningFiltration(P,50,M);;

gap> Add(L,Q);;

gap> od;;

gap> B:=Basins(L);
gap> Display(B);

5.6 A third example of digital image segmentation

The following image is number 3096 in the BSDS500 database of images [MFTMO1].

A common first step in segmenting such an image is to appropriately threshold the corresponding
gradient image.

The following commands use the thresholded gradient image to produce an outline of the aero-
plane. The outline is a pure cubical complex with one path component and with first Betti number
equal to 1.

Example
gap> file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/3096b. jpg
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,30);;

gap> F:=Complement0fFilteredPureCubicalComplex(F);;

gap> M:=FiltrationTerm(F,27);; #Thickening chosen based on degree 0 barcode
gap> Display(M);;

gap> P:=List([1..BettiNumber(M,0)] ,n->PathComponent0fPureComplex(M,n));;
gap> P:=Filtered(P,m->Size(m)>10);;

gap> M:=P[1];;

gap> for m in P do

> M:=PureComplexUnion(M,m) ;;

> od;

gap> T:=ThickeningFiltration(M,50);;

gap> BettiNumber (FiltrationTerm(T,11),0);

)5
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1

gap> BettiNumber (FiltrationTerm(T,11),1);
1

gap> BettiNumber (FiltrationTerm(T,12),1);
0

gap> #Confirmation that 11-th filtration term has one hole and the 12-th term is gontractible.
gap> C:=FiltrationTerm(T,11);;

gap> for n in Reversed([1..10]) do

> C:=ContractedComplex(C,FiltrationTerm(T,n));

> od;

gap> C:=PureComplexBoundary(PureComplexThickened(C));;

gap> H:=HomotopyEquivalentMinimalPureCubicalSubcomplex(FiltrationTerm(T,12),C);;
gap> B:=ContractedComplex (PureComplexBoundary(H)) ;;

gap> Display(B);

5.7 Naive example of digital image contour extraction

The following greyscale image is available from the online appendix to the paper [CKL14].

The following commands produce a picture of contours from this image based on greyscale val-
ues. They also produce a picture of just the closed contours (the non-closed contours having been
homotopy collapsed to points).

Example
gap> file:=Filename(DirectoriesPackageLigrary("HAP“),”../tutorial/images/circularGradient.png");;
gap> L:=[1;;

gap> for n in [1..15] do

> M:=ReadImageAsPureCubicalComplex(file,n*30000) ;
> M:=PureComplexBoundary (M) ;;

> Add(L,M);
> od;;
gap> C:=L[1];;

gap> for n in [2..Length(L)] do C:=PureComplexUnion(C,L[n]); od;
gap> Display(C);
gap> Display(ContractedComplex(C));

Contours from the above greyscale image:

Closed contours from the above greyscale image:

Very similar results are obtained when applied to the file circularGradientNoise.png, con-
taining noise, available from the online appendix to the paper [CKL14].

The number of distinct "light sources" in the image can be read from the countours. Alternatively,

this number can be read directly from the barcode produced by the following commands.
Example
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,20);;
gap> P:=PersistentBettiNumbersAlt(F,1);;

gap> BarCodeCompactDisplay (P);

The seventeen bars in the barcode correspond to seventeen light sources. The length of a bar is a
measure of the "persistence" of the corresponding light source. A long bar may initially represent a
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cluster of several lights whose members may eventually be distinguished from each other as new bars
(or persistent homology classes) are created.

Here the command PersistentBettiNumbersAlt has been used. This command is explained in
the following section.

The follwowing commands use a watershed method to partition the digital image into regions, one

region per light source. A makeshift function Basins (L), available here, is called. (The efficiency of
the example could be easily improved. For simplicity it uses generic commands which, in principle,
can be applied to cubical or permutarhedral complexes of higher dimensions.)
Example
gap> file:=Filename (DirectoriesPackageLibrary("HAP"),"../tutorial/images/circularQ
gap> F:=ReadImageAsFilteredPureCubicalComplex(file,20);;
gap> FF:=Complement0fFilteredPureCubicalComplex(F) ;

gap> W:=(FiltrationTerm(FF,3));
gap> for n in [4..23] do
> L:=[1;;

> for i in [1..PathComponentOfPureComplex(W,0)] do

> P:=PathComponent0fPureComplex(W,1i);;

> Q:=ThickeningFiltration(P,150,FiltrationTerm(FF,n));;
> Add(L,Q);;

> od;;

> W:=Basins (L) ;

> od;

gap> C:=PureComplexComplement (W) ;;
gap> T:=PureComplexThickened(C);; C:=ContractedComplex(T,C);;
gap> Display(C);

5.8 Alternative approaches to computing persistent homology

From any sequence Xo C X; C X, C --- C Xr of cellular spaces (such as pure cubical complexes,
or cubical complexes, or simplicial complexes, or regular CW complexes) we can construct a fil-
tered chain complex C.Xy C C,X; C C.Xp C ---C.Xy. The induced homology homomorphisms
H,(CXo,F) — H,(C.X,,F) — H,(C,.X2,F) — --- — H,(C.X7,F) with coefficients in a field F can
be computed by applying an appropriate sequence of elementary row operations to the boundary ma-
trices in the chain complex C,X7r ® [F; the boundary matrices are sparse and are best represented as
such; the row operations need to be applied in a fashion that respects the filtration. This method is
used in the above examples of persistent homology. The method is not practical when the number of
cells in X7 is large.

An alternative approach is to construct an admissible discrete vector field on each term Xj in the
filtration. For each vector field there is a non-regular CW -complex Y; whose cells correspond to the
critical cells in X and for which there is a homotopy equivalence X; ~ Y;. For each k the composite
homomorphism H,(C.Y;,F) 5 H,(CXk,F) — H,(CXy41,F) 5 H,(C.Yi+1,F) can be computed and
the persistent homology can be derived from these homology homomorphisms. This method is imple-
mented in the function PersistentBettiNUmbersAlt (X,n,p) where p is the characteristic of the
field, n is the homology degree, and X can be a filtered pure cubical complex, or a filtered simplicial
complex, or a filtered regular CW complex, or indeed a filtered chain complex (represented in sparse

radient.png") ;
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form). This function incorporates the functions ContractedFilteredPureCubicalComplex(X)
and ContractedFilteredRegularComplex(X) which respectively input a filtered pure cubical com-
plex and filtered regular CW-complex and return a filtered complex of the same data type in which
each term of the output filtration is a deformation retract of the corresponding term in the input filtra-
tion.

In this approach the vector fields on the various spaces X; are completely independent and so
the method lends itself to a degree of easy parallelism. This is not incorporated into the current
implementation.

As an illustration we consider a synthetic data set S consisting of 3527 points sampled, with errors,
from an ‘unknown’ manifold M in R?. From such a data set one can associate a 3-dimensional cubical
complex Xy consisting of one unit cube centred on each (suitably scaled) data point. A visualization
of Xy is shown below.

Given a pure cubical complex X; we construct X1 = X; U {Ei} 2eA by adding to X each closed
unit cube Ei in R? that intersects non-trivially with X;. We construct the filtered cubical complex
X, = {Xi}o<i<19 and compute the persistence matrices f;* for d = 0,1,2 and for Z, coefficients. The
filtered complex X, is quite large. In particular, the final space Xj9 in the filtration involves 1092727
vertices, 3246354 edges, 3214836 faces of dimension 2 and 1061208 faces of dimension 3. The usual
matrix reduction approach to computing persistent Betti numbers would involve an appropriate row
reduction of sparse matrices one of which has over 3 million rows and 3 million columns.

Example

gap> file:=HapFile("data247.txt");;

gap> Read(file);;

gap> F:=ThickeningFiltration(T,20);;

gap> P:=PersistentBettiNumbersAlt(F,[0,1,2]);;
gap> BarCodeCompactDisplay(P) ;

The barcodes suggest that the data points might have been sampled from a manifold with the
homotopy type of a torus.

5.8.1 Non-trivial cup product

Of course, a wedge S?V S' v S! has the same homology as the torus S' x S!. By establishing that a
‘noise free’ model for our data points, say the 10-th term X in the filtration, has a non-trivial cup
product U: H'(X19,7Z) x H' (X0,Z) — H*(X10,7Z) we can eliminate S*>V S' v §! as a candidate from
which the data was sampled.

Example
gap> X10:=RegularCWComplex(FiltrationTerm(F,10));;
gap> cup:=LowDimensionalCupProduct (X10);;

gap> cup([1,0],[0,1]1);

[ 1]

5.8.2 Explicit homology generators

It could be desirable to obtain explicit representatives of the persistent homology generators that
"persist" through a significant sequence of filtration terms. There are two such generators in de-
gree 1 and one such generator in degree 2. The explicit representatives in degree n could consist of
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an inclusion of pure cubical complexes Y, C Xjo for which the incuced homology homomorphism
H,(Y,,Z) — H,(X0,7Z) is an isomorphism, and for which ¥, is minimal in the sense that its homotopy
type changes if any one or more of its top dimensional cells are removed. Ideally the space Y, should
be "close to the original dataset" Xy. The following commands first construct an explicit degree 2 ho-
mology generator representative ¥, C X9 where ¥, is homotopy equivalent to X;¢. They then construct
an explicit degree 1 homology generators representative Y1 C Xjo where Y} is homotopy equivalent to
a wedge of two circles. The final command displays the homology generators representative Y.

Example

gap> Y2:=FiltrationTerm(F,10);;

gap> for t in Reversed([1..9]) do

> Y2:=ContractedComplex(Y2,FiltrationTerm(F,t));
> od;

gap> Y2:=ContractedComplex(Y2);;

gap> Size(FiltrationTerm(F,10));
918881

gap> Size(Y2);

61618

gap> Y1:=PureComplexDifference(Y2,PureComplexRandomCell(Y2));;
gap> Y1l:=ContractedComplex(Y1);;

gap> Size(Y1);

474

gap> Display(Y1);

5.9 Khnotted proteins

The Protein Data Bank contains a wealth of data which can be investigated with respect to knottedness.
Information on a particular protein can be downloaded as a .pdb file. Each protein consists of one or
more chains of amino acids and the file gives 3-dimensional Euclidean coordinates of the atoms in
amino acids. Each amino acid has a unique "alpha carbon" atom (labelled as "CA" in the pdb file). A
simple 3-dimensional curve, the protein backbone, can be constructed through the sequence of alpha
carbon atoms. Typically the ends of the protein backbone lie near the "surface" of the protein and can
be joined by a path outside of the protein to obtain a simple closed curve in Euclidean 3-space.

The following command reads in the pdb file for the T.thermophilus 1V2X protein, which consists
of a single chain of amino acids, and uses Asymptote software to produce an interactive visualization

of its backbone. A path joining the end vertices of the backbone is displayed in blue.
Example

gap> file:=HapFile("datalV2X.pdb");;
gap> DisplayPDBfile(file);

The next command reads in the pdb file for the T.thermophilus 1V2X protein and represents it
as a 3-dimensional pure cubical complex K. A resolution of » =5 is chosen and this results in a
representation as a subcomplex K of an ambient rectangular box of volume equal to 184 x 186 x 294
unit cubes. The complex K should have the homotopy type of a circle and the protein backbone is a
1-dimenional curve that should lie in K. The final command displays K.
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Example

gap> r:=b;;

gap> K:=ReadPDBfileAsPureCubicalComplex(file,r);;

gap> K:=ContractedComplex(K);;

gap> K!.properties;

[ [ "dimension", 3 ], [ "arraySize", [ 184, 186, 294 1 ] ]

gap> Display(K);

Next we create a filtered pure cubical complex by repeatedly thickening K. We perform 15 thick-
enings, each thickening being a term in the filtration. The B; barcode for the filtration is displayed.
This barcode is a descriptor for the geometry of the protein. For current purposes it suffices to note
that the first few terms of the filtration have first homology equal to that of a circle. This indicates that
the Euclidean coordinates in the pdb file robustly determine some knot.

Example

gap> F:=ThickeningFiltration(X,15);;

gap> F:=FilteredPureCubicalComplexToCubicalComplex(F);;

gap> F:=FilteredCubicalComplexToFilteredRegularCWComplex (F);;
gap> P:=PersistentBettiNumbersAlt(F,1);;

gap> BarCodeCompactDisplay (P);

The next commands compute a presentation for the fundamental group 7 (R?\ K) and the Alexan-
der polynomial for the knot. This is the same Alexander polynomial as for the trefoil knot. Also, Tietze
transformations can be used to see that the fundamental group is the same as for the trefoil knot.
Example

gap> C:=PureComplexComplement (K) ;;
gap> C:=ContractedComplex(C);;
gap> G:=FundamentalGroup(C);;

gap> Generators0fGroup(G);

[ £f1, £2 ]

gap> Relators0fFpGroup(G);

[ £2xf17-1*£2"-1+f1~-1#f2*f1 ]

gap> AlexanderPolynomial(G);
x_172-x_1+1

5.10 Random simplicial complexes

For a positive integer n and probability p we denote by Y (n, p) the Linial -Meshulam random simplicial
2-complex. Its 1-skeleton is the complete graph on n vertices; each possible 2-simplex is included
independently with probability p.

The following commands first compute the number /; of non-trivial cyclic summands in
H;(Y (100, p),Z) for a range of probabilities p and i = 1,2 and then produce a plot of %; versus p.
The plot for 4 is red and the plot for A, is blue. A plot for the Euler characteristic 1 — i + h is shown
in green.
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Example

79

gap> L:=[1;;M:=[1;;

gap> for p in [1..100] do

> K:=RegularCWComplex(RandomSimplicialTwoComplex (100,p/1000));;
h1:=Length(Homology(K,1));;

h2:=Length (Homology (K,2));;

Add(L, [1.0%(p/1000),h1,"red"]);

Add(L, [1.0%(p/1000),h2,"blue"]);
Add(M, [1.0%(p/1000),1-h1+h2,"green"]);
od;

gap> ScatterPlot(L);

gap> ScatterPlot(M);

V V V V V V

From this plot it seems that there is a phase change threshold at around p = 0.025. An inspection
of the first homology groups H; (Y (100, p),Z) shows that in most cases there is no torsion. However,

around the threshold some of the complexes do have torsion in their first homology.

Similar commands for Y (75, p) suggest a phase transition at around p = 0.035 in this case. The
following commands compute H, (Y (75, p),Z) for 900 random 2-complexes with p in a small inter-
val around 0.035 and, in each case where there is torsion, the torsion coefficients are stored in a list.
The final command prints these lists -~ all but one of which are of length 1. For example, there is
one 2-dimensional simplicial complex on 75 vertices whose first homology contains the summand
ZIO7879661870516800665161182578823128- The largest prime factor is 80555235907994145009690263 oc-

curing in the summand Z59837760616287294231081766978855-

Example
gap> torsion:=function(n,p)

> local H, Y;

> Y:=RegularCWComplex(RandomSimplicialTwoComplex(n,p));
> H:=Homology(Y,1);

> H:=Filtered(H,x->not x=0);

> return H;

> end;

function( n, p ) ... end

gap> L:=[];;for n in [73000..73900] do
> t:=torsion(75,n/2000000) ;

> if not t=[] then Add(L,t); fi;

> od;

gap> Display(L);
[ 2
[ 26
[ 259837760616287294231081766978855
L 2
L 3
[ 2
L
L
L
L
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-

-

-
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5.11

Computing homology of a clique complex (Vietoris-Rips complex)

Topological data analysis provides one motivation for wanting to compute the homology of a clique
complex. Consider for instance the cloud of data points shown in Example 5.2.1. This data is a set
S of 400 points in the plane. Let I" be the graph with vertex set S and with two vertices joined by an
edge if they lie within a Euclidean distance of 40 of each other. The clique complex K = K(I") could
be studied to see what it reveals about the data. The following commands construct K and show that
it is a 23-dimensional simplicial complex consisting of a total of 36191976 simplices.

gap>
gap>
gap>
gap>
gap>
gap>
gap>

Simplicial complex of dimension 23.

Example
file:=HapFile("datal34.txt");;
Read(file);
A:=VectorsToSymmetricMatrix(S,EuclideanApproximatedMetric) ;;
threshold:=40;;

grph:=SymmetricMatrixToGraph(A,threshold);;
dimension_cap:=100;;

K:=CliqueComplex(grph,dimension_cap) ;




A newer HAP tutorial 81

gap> Size(K);
36191976

The computation of the homology of this clique complex K is a challenge because of its size. If
we are only interested in K up to homotopy then we could try to modify the graph I in such a way that
the homotopy type of the clique complex is unchanged but the size of the clique complex is reduced.

This is done in the following commands, producing a smaller 19-dimensional simplicial complex K
with 4180652 simplices.

Example

gap> ContractGraph(grph);;

gap> dimension_cap:=100;;
gap> K:=CliqueComplex(grph,dimension_cap);
Simplicial complex of dimension 19.

gap> Size(K);
4180652

To compute the homology of K in degrees 0 to 5 say, we could represent K as a regular
CW-complex Y and then compute the homology of Y as follows. The homology H,(K) = Z for
n=0,1and H,(K) =0 for n = 2,3,4,5 is consistent with the data having been sampled from a space
with the homotopy type of a circle.

Example

gap> Y:=RegularCWComplex (K) ;
Regular CW-complex of dimension 19

gap> Homology(Y,0);
[ 0]

gap> Homology(Y,1);
[ 0]

gap> Homology(Y,2);
[ 1]

gap> Homology(Y,3);
[ 1]

gap> Homology(Y,4);
[ 1]

gap> Homology(Y,5)
[ 1]




Chapter 6

Group theoretic computations

6.1 Third homotopy group of a supsension of an Eilenberg-MacLane
space

The following example uses the nonabelian tensor square of groups to compute the third homotopy

group
m3(S(K(G,1))) = Z*°
of the suspension of the Eigenberg-MacLane space K (G, 1) for G the free nilpotent group of class
2 on four generators.
Example
gap> F:=FreeGroup(4);;G:=NilpotentQuotient(F,2);;
gap> ThirdHomotopyGroupOfSuspensionB(G) ;
to,o0,o0,o0,o0,0,0o0,000,0,o00,0,000,0,0,0,0O0,
0, 0, 0, 0, 0, 0, 0, 0]

6.2 Representations of knot quandles

The following example constructs the finitely presented quandles associated to the granny knot and
square knot, and then computes the number of quandle homomorphisms from these two finitely prre-
sented quandles to the 17-th quandle in HAP’s library of connected quandles of order 24. The number
of homomorphisms differs between the two cases. The computation therefore establishes that the com-

plement in R3 of the granny knot is not homeomorphic to the complement of the square knot.
Example
gap> Q:=ConnectedQuandle(24,17,"import");;
gap> K:=PureCubicalKnot(3,1);;

gap> L:=ReflectedCubicalKnot(K);;

gap> square:=KnotSum(K,L);;

gap> granny:=KnotSum(K,K);;

gap> gcsquare:=GaussCodeOfPureCubicalKnot (square) ;;
gap> gcgranny:=GaussCodeOfPureCubicalKnot (granny) ;;
gap> quuare:=PresentationKnotQuandle(gcsquare);;

gap> Qgranny:=PresentationKnotQuandle (gcgranny) ;;
gap> NumberOfHomomorphisms (Qsquare,Q) ;
408

82
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gap> NumberOfHomomorphisms (Qgranny,Q) ;
24

The following commands compute a knot quandle directly from a pdf file containing the following
hand-drawn image of the knot.

Example
gap> gc:=ReadLinkImageAsGaussCode ("myknot.pdf");
rcrf-2,4,-1,3,-3,2,-4,111, -1, -1, 1, -111
gap> Q:=PresentationKnotQuandle(gc);

Quandle presentation of 4 generators and 4 relators.

6.3 Identifying knots

Low index subgrops of the knot group can be used to identify knots with few crossings. For instance,

the following commands read in the following image of a knot and identify it as a sum of two trefoils.

The commands determine the prime components only up to reflection, and so they don’t distinguish

between the granny and square knots.

Example

gap> gc:=ReadLinkImageAsGaussCode ("myknot2.png") ;

ttcf-4,7, -5, 4, -7,5, -3,6, -2,3,8, -8, -6,2,1, -111,
[1, -1, -1, -1, -1, -1, -1, 11 1]

gap> IdentifyKnot(gc);;

PrimeKnot(3,1) + PrimeKnot(3,1) modulo reflections of components.

6.4 Aspherical 2-complexes

The following example uses Polymake’s linear programming routines to establish that the 2-complex
associated to the group presentation < x,y,7 : xyx = yxy, yzy = zyZ, XZx = zxz > is aspherical (that is,
has contractible universal cover). The presentation is Tietze equivalent to the presentation used in the

computer code, and the associated 2-complexes are thus homotopy equivalent.
Example

gap> F:=FreeGroup(6);;

gap> x:=F.1;;y:=F.2;;z:=F.3;;a:=F.4;;b:=F.5;;c:=F.6;;
gap> rels:=[a~-1*x*y, b -1%y*z, c”-1lxz*x, axx*(y*a) -1,
> b*y* (z*b) ~-1, cxz*(x*c)~-1];;

gap> Print (IsAspherical(F,rels),"\n");

Presentation is aspherical.

true

6.5 Group presentations and homotopical syzygies

Free resolutons for a group G are constructed in HAP as the cellular chain complex R, = C,(X) of
the universal cover of some CW-complex X = K(G,1). The 2-skeleton of X gives rise to a free
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presentation for the group G. This presentation depends on a choice of maximal tree in the 1-skeleton
of X in cases where X has more than one O-cell. The attaching maps of 3-cells in X can be regarded
as homotopical syzygies or van Kampen diagrams over the group presentation whose boundaries spell
the trivial word.

The following example constructs four terms of a resolution for the free abelian group G on n =3
generators, and then extracts the group presentation from the resolution as well as the unique homo-
topical syzygy. The syzygy is visualized in terms of its graph of edges, directed edges being coloured
according to the corresponding group generator. (In this example the CW-complex X is regular, but
in cases where it is not the visualization may be a quotient of the 1-skeleton of the syzygy.)

Example

gap> n:=3;;c:=1;;
G:=Image (NgEpimorphismNilpotentQuotient (FreeGroup(n),c));;

gap> R:=ResolutionNilpotentGroup(G,4);;
P:=Presentation0OfResolution(R);;

gap> P.freeGroup;

<free group on the generators [ x, y, z 1>

gap> P.relators;

[ yo-1*xx~-1*y*x, z7-1%x"-1xz*x, z7-1*xy~-1*z*y ]

gap> IdentityAmongRelatorsDisplay(R,1);

This homotopical syzygy represents a relationship between the three relators [x,y], [x,z] and [y, Z]
where [x,y] = xyx~'y~!. The syzygy can be thought of as a geometric relationship between commu-
tators corresponding to the well-known Hall-Witt identity:

[xy]s2z] [, ] [lzd], y] = 1.

The homotopical syzygy is special since in this example the edge directions and labels can be
understood as specifying three homeomorphisms between pairs of faces. Viewing the syzygy as the
boundary of the 3-ball, by using the homeomorphisms to identify the faces in each face pair we obtain
a quotient CW-complex M involving one vertex, three edges, three 2-cells and one 3-cell. The cell
structure on the quotient exists because, under the restrictions of homomorphisms to the edges, any
cycle of edges retricts to the identity map on any given edge. The following result tells us that M is in
fact a closed oriented compact 3-manifold.

THEOREM. [Seifert u. Threlfall, Topologie, p.208] Let S? denote the boundary of the 3 -ball B>
and suppose that the sphere S* is given a regular CW -structure in which the faces are partitioned into
a collection of face pairs. Suppose that for each face pair there is an orientation reversing homeomor-
phism between the two faces that sends edges to edges and vertices to vertices. Suppose that by using
these homeomorphisms to identity face pairs we obtain a (not necessarily regular) CW -structure on
the quotient M. Then M is a closed compact orientable manifold if and only if its Euler characteristic
is x(M) =0.

The next commands construct a presentation and associated unique homotopical syzygy for the
free nilpotent group of class ¢ = 2 on n = 2 generators.
Example

gap> n:=2;;c:=2;;
G:=Image (NgEpimorphismNilpotentQuotient (FreeGroup(n),c));;
gap> R:=ResolutionNilpotentGroup(G,4);;
P:=Presentation0OfResolution(R);;
gap> P.freeGroup;
<free group on the generators [ x, y, z 1>
gap> P.relators;
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[ z*x*xy*x~-1*%y~-1, zxx*z~-1*x"-1, z*y*z~-1xy~-1 ]
gap> IdentityAmongRelatorsDisplay(R,1);

The syzygy represents the following relationship between commutators (in a free group).

[t olbey] s Do~y T Ll ha], 27 ) =1

Again, using the theorem of Seifert and Threlfall we see that the free nilpotent group of class two
on two generators arises as the fundamental group of a closed compact orientable 3-manifold M.

6.6 Bogomolov multiplier

The Bogomolov multiplier of a group is an isoclinism invariant. Using this property, the following ex-
ample shows that there are precisely three groups of order 243 with non-trivial Bogomolov multiplier.
The groups in question are numbered 28, 29 and 30 in GAP’s library of small groups of order 243.

Example

gap> L:=A11SmallGroups(3~5);;

gap> C:=IsoclinismClasses(L);;

gap> for ¢ in C do

> if Length(BogomolovMultiplier(c[1]))>0 then
> Print(List(c,g->IdGroup(g)),"\n\n\n"); fij;
> od;

[ [ 243, 28], [ 243, 29 1, [ 243, 30 1] 1]

6.7 Second group cohomology and group extensions

Any group extension N — E — G gives rise to:
* an outer action &: G — Out(G) of Gon N.

* an action G — Aut(Z(N)) of G on the centre of N, uniquely induced by the outer action & and
the canonical action of Out(N) on Z(N).

» a2-cocycle f:G x G — Z(N) with values in the G-module A = Z(N).

Any outer homomorphism o: G — Out(N) gives rise to a cohomology class k in H>(G,Z(N)).
It was shown by Eilenberg and MacLane that the class k& is trivial if and only if the outer action
arises from some group extension N — E — G. If k is trivial then there is a bijection between the
second cohomology group H?(G,Z(N)) and Yoneda equivalence classes of extensions of G by N that
are compatible with «.

FIRST EXAMPLE.

Consider the group H = SmallGroup(64,134). Consider the normal subgroup N =
NormalSubgroups(G)[15] and quotient group G = H/N. We have N =Cy X D4, A=Z(N) =C2 X C,
and G = C2 X Cz.

Suppose we wish to classify all extensions Cy x D4 — E — C> x C; that induce the given outer
action of G on N. The following commands show that, up to Yoneda equivalence, there are two such
extensions.
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Example
gap> H:=SmallGroup(64,134);;
gap> N:=NormalSubgroups(H) [15];;
gap> A:=Centre (GOuterGroup(H,N));;
gap> G:=ActingGroup(A);;
gap> R:=ResolutionFiniteGroup(G,3);;
gap> C:=HomToGModule(R,A);;

gap> Cohomology(C,2);
[ 2]

The following additional commands return a standard 2-cocycle f : G x G — A = C, x C; corre-
sponding to the non-trivial element in H%(G,A). The value f(g,h) of the 2-cocycle is calculated for

all 16 pairs g,h € G.
Example

gap> CH:=CohomologyModule(C,2);;
gap> Elts:=Elements(ActedGroup(CH));
[ <identity> of ..., f1 ]

gap> x:=Elts[2];;
gap> c:=CH! .representativeCocycle(x);
Standard 2-cocycle

gap> f:=Mapping(c);;
gap> for g in G do for h in G do
> Print(£(g,h),"\n");
> od;

> od;

<identity> of
<identity> of
<identity> of
<identity> of
<identity> of

f6

<identity> of

f6

<identity> of
<identity> of
<identity> of
<identity> of
<identity> of

£6

<identity> of

f6

The following commands will then construct and identify all extensions of N by G corresponding

to the given outer action of G on N.
Example

gap> H := SmallGroup(64,134);;
gap> N := NormalSubgroups(H) [15];;
gap> ON := GOuterGroup(H,N);;



gap>
gap>
gap>
gap>
gap>
gap>

gap>
gap>
gap>
gap>

gap>
gap>
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A := Centre(ON);;
G:=ActingGroup(A);;
R:=ResolutionFiniteGroup(G,3);;
C:=HomToGModule (R,A) ;;
CH:=CohomologyModule(C,2);;
Elts:=Elements (ActedGroup(CH)) ;;

1st := List(Elts{[1..Length(Elts)]},x->CH! .representativeCocycle(x));;

ccgrps := List(lst, x->CcGroup(ON, x));;

#So ccgrps is a list of groups, each being an extension of G by N, correspond
#to the two elements in H"2(G,A).

#The following command produces the GAP identification number for each group.
L:=List(ccgrps,IdGroup);

[ [ 64, 1341, [ 64, 135 ] 1]

SECOND EXAMPLE
The following example illustrates how to construct a cohomology class k in H?(G,A) from a
cocycle f: G x G — A, where G = SL,(Z4) and A = Zg with trivial action.

gap>
gap>
gap>

gap>
gap>
gap>

gap>
gap>
gap>
gap>
gap>

gap>
gap>

Example
#We’1l construct G=SL(2,Z_4) as a permutation group.
G:=SL(2,ZmodnZ(4));;

G:=Image (IsomorphismPermGroup(G));;

#We’1l construct Z_8=Z/8Z as a G-outer group
z_8:=Group((1,2,3,4,5,6,7,8));;
Z_8:=TrivialGModuleAsGOuterGroup(G,z_8);;

#We’1l compute the group h=H"2(G,Z_8)
R:=ResolutionFiniteGroup(G,3);; #R is a free resolution
C:=HomToGModule(R,Z_8);; # C is a chain complex
H:=CohomologyModule(C,2);; #H is the second cohomology H~2(G,Z_8)
h:=ActedGroup(H);; #h is the underlying group of H

#We’1ll compute cocycles c2, c5 for the second and fifth cohomology classs
c2:=H! .representativeCocycle(Elements (h) [2]);

Standard 2-cocycle

gap>

c5:=H! .representativeCocycle (Elements (h) [5]);

Standard 2-cocycle

gap>
gap>
gap>

gap>
gap>

false

gap>
4

gap>

#Now we’ll construct the cohomology classes C2, C5 in the group h correspondi
C2:=CohomologyClass(H,c2);;
C5:=CohomologyClass(H,c5);;

#Finally, we’ll show that C2, C5 are distinct cohomology classes, both of ord
C2=C5;

Order(C2);

Order (C5) ;

ing

ng to the cocyc

er 4.
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6.8 Second group cohomology and cocyclic Hadamard matrices

An Hadamard matrix is a square n X n matrix H whose entries are either +1 or —1 and whose rows
are mutually orthogonal, that is HH' = nl, where H' denotes the transpose and I, denotes the n x n
identity matrix.

Given a group G = {g1,82,...,8n} of order n and the abelian group A = {1,—1} of square roots
of unity, any 2-cocycle f:G x G — A corresponds to an n x n matrix F = (f(gi,&;))1<i j<n Whose
entries are +1. If F' is Hadamard it is called a cocyclic Hadamard matrix corresponding to G.

The following commands compute all 192 of the cocyclic Hadamard matrices for the abelian group

G =74®7Z4 of order n = 16.
Example

gap> G:=AbelianGroup([4,4]);;

gap> F:=CocyclicHadamardMatrices(G);;
gap> Length(F);

192

6.9 Third group cohomology and homotopy 2-types

HOMOTOPY 2-TYPES

The third cohomology H>(G,A) of a group G with coefficients in a G-module A, together with
the corresponding 3-cocycles, can be used to classify homotopy 2-types. A homotopy 2-type is
a CW-complex whose homotopy groups are trivial in dimensions » = 0 and n > 2. There is an
equivalence between the two categories

1. (Homotopy category of connected CW-complexes X with trivial homotopy groups 7, (X) for
n>?2)

2. (Localization of the category of simplicial groups with Moore complex of length 1, where lo-
calization is with respect to homomorphisms inducing isomorphisms on homotopy groups)

which reduces the homotopy theory of 2-types to a “computable’ algebraic theory. Furthermore, a
simplicial group with Moore complex of length 1 can be represented by a group H endowed with two
endomorphisms s: H — H and ¢t: H — H satisfying the axioms

* ss=s,15=35,
e ft=t,st=t,
* [kers,kers] = 1.

Ths triple (H,s,t) was termed a cat' -group by J.-L. Loday since it can be regarded as a group H
endowed with one compatible category structure.

The homotopy groups of a cat'-group H are defined as: 7y (H) = image(s) /t(ker(s)); m(H) =
ker(s) Nker(z); m,(H) = 0 for n > 2 or n = 0. Note that m(H) is a 7 (H)-module where the action is
induced by conjugation in H.
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A homotopy 2-type X can be represented by a cat'-group H or by the homotopy groups 7 X =
mH, ;X = mH and a cohomology class k € H3 (7 X, mX). This class k is the Postnikov invariant.

RELATION TO GROUP THEORY

A number of standard group-theoretic constructions can be viewed naturally as a cat' -group.

1. A ZG-module A can be viewed as a cat'-group (H,s,t) where H is the semi-direct product
AxGands(a,g)=(1,8),.t(a,g) =(1,g). Here m(H) = G and m(H) = A.

2. A group G with normal subgroup N can be viewed as a cat!-group (H,s,t) where H is the
semi-direct product N x G and s(n,g) = (1,g), t(n,g) = (1,ng). Here m(H) = G/N and
V(%) (H) =0.

3. The homomorphism t: G — Aut(G) which sends elements of a group G to the corresponding
inner automorphism can be viewed as a cat'-group (H,s,t) where H is the semi-direct prod-
uct G x Aut(G) and s(g,a) = (1,a), t(g,a) = (1,1(g)a). Here m (H) = Out(G) is the outer
automorphism group of G and m (H) = Z(G) is the centre of G.

These three constructions are implemented in HAP.

EXAMPLE

The following commands begin by constructing the cat' -group H of Construction 3 for the group
G = SmallGroup(64,134). They then construct the fundamental group of H and the second homotopy

group of as a ; -module. These homotopy groups have orders 8 and 2 respectively.
Example

gap> G:=SmallGroup(64,134);;

gap> H:=AutomorphismGroupAsCatOneGroup(G);;
gap> pi_1:=HomotopyGroup(H,1);;

gap> pi_2:=HomotopyModule(H,2);;

gap> Order(pi_1);

8

gap> Order (ActedGroup(pi_2));

2

The following additional commands show that there are 1024 Yoneda equivalence classes of

cat' -groups with fundamental group 7; and ﬂ:lE— mO(ziLule equal to 7, in our example.
xample

gap> R:=ResolutionFiniteGroup(pi_1,4);;
gap> C:=HomToGModule(R,pi_2);;

gap> CH:=CohomologyModule(C,3);;

gap> AbelianInvariants(ActedGroup(CH));
[2,2,2,2,2,2,2,2,2,2]

A 3-cocycle f:m X m X m — M corresponding to a random cohomology class k € H 3(71'1,%2) can

be produced using the following command.

Example
gap> x:=Random(Elements (ActedGroup(CH)));;
gap> f:=CH!.representativeCocycle(x);
Standard 3-cocycle

The 3-cocycle corresponding to the Postnikov invariant of H itself can be easily constructed directly
from its definition in terms of a set-theoretic ’section’ of the crossed module corresponding to H.



Chapter 7

Cohomology of groups (and Lie Algebras)

7.1 Finite groups

7.1.1 Naive homology computation for a very small group

It is possible to compute the low degree (co)homology of a finite group or monoid of small order
directly from the bar resolution. The following commands take this approach to computing the fifth
integral homology

Hs(Q4,Z) = Lo ® 7y

of the quaternion group G = Q4 of order 8.
Example

gap> Q:=QuaternionGroup(8);;

gap> B:=BarComplex0fMonoid(Q,6);;
gap> C:=ContractedComplex(B);;
gap> Homology(C,5);

[2, 2]

gap> List([0..6],B!.dimension);

[ 1, 7, 49, 343, 2401, 16807, 117649 ]
gap> List([0..6],C!.dimension);

[1, 2, 2,1, 2, 4, 102945 ]

However, this approach is of limited applicability since the bar resolution involves |G| free gener-
ators in degree k. A range of techniques, tailored to specific classes of groups, can be used to compute
the (co)homology of larger finite groups.

7.1.2 A more efficient homology computation

The following example computes the seventh integral homology

H7(M>3,7) = Zi6 ® Zis

and fourth integral cohomomogy

H*(Ma4,7) = 712

of the Mathieu groups M3 and Mp4. (Warning: the computation of Hy(Mp3,7) takes a couple of
hours to run.)

90
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Example

91

gap> GroupHomology (MathieuGroup(23),7);
[ 16, 3, 5]

gap> GroupCohomology (MathieuGroup(24),4);
[ 4, 3]

7.1.3 Computation of an induced homology homomorphism

The following example computes the cokernel
coker(H3 (A7, Z) — H3 (S](), Z)) =7 ®7n

of the degree-3 integral homomogy homomorphism induced by the canonical inclusion A7 — Sio
of the alternating group on 7 letters into the symmetric group on 10 letters. The analogous cokernel

with Z, homology coefficients is also computed.
Example

gap> G:=SymmetricGroup(10);;

gap> H:=AlternatingGroup(7);;

gap> f:=GroupHomomorphismByFunction(H,G,x->x);;

gap> F:=GroupHomology(f,3);

MappingByFunction( Pcp-group with orders [ 4, 3 ], Pcp-group with orders

[ 2, 2, 4, 3], function( x ) ... end )
gap> AbelianInvariants(Range (F)/Image(F));
(2, 2]

gap> Fmod2:=GroupHomology(f,3,2);;
gap> AbelianInvariants(Range (Fmod2) /Image (Fmod2)) ;
[ 2, 2]

7.1.4 Some other finite group homology computations

The following example computes the third integral homology of the Weyl group W = Weyl (Esg), a

group of order 696729600.
H3(Weyl(Eg),Z) = 7o ®© Lo ® Z12
Example

gap> L:=SimpleLieAlgebra("E",8,Rationals);;
gap> W:=WeylGroup(RootSystem(L));;

gap> Order (W) ;

696729600

gap> GroupHomology(W,3) ;

[ 2, 2, 4, 3]

The preceding calculation could be achieved more quickly by noting that W = Weyl (Eg) is a Cox-
eter group, and by using the associated Coxeter polytope. The following example uses this approach
to compute the fourth integral homology of W. It begins by displaying the Coxeter diagram of W, and

then computes
H4(W€yl(Eg), Z) =70 DLy DZy DZs.
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Example
gap> D:=[[1,[2,3]],[2,[3,31]1,(3,[4,3],(5,311,[5,[6,311,[6,[7,31],[7,(8,311];;
gap> CoxeterDiagramDisplay (D) ;

Example
gap> polytope:=CoxeterComplex_alt(D,5);;
gap> R:=FreeGResolution(polytope,5);
Resolution of length 5 in characteristic O for <matrix group with
8 generators> .

No contracting homotopy available.

gap> C:=TensorWithIntegers(R);
Chain complex of length 5 in characteristic O .

gap> Homology(C,4);
[ 2’ 2’ 2, 2 ]

The following example computes the sixth mod-2 homology of the Sylow 2-subgroup Syl,(Ma4)
of the Mathieu group Mo4.
Hg(Syl(Ma4), Zo) = L5

Example

gap> GroupHomology (SylowSubgroup (MathieuGroup(24),2),6,2);

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2]

The following example computes the sixth mod-2 homology of the Unitary group Us(4) of order
312000.

Ho(Us(4),Z2) = 75
Example

gap> G:=GU(3,4);;

gap> Order(G);

312000

gap> GroupHomology(G,6,2);
[ 2, 2,2, 2]

The following example constructs the Poincare series
_ 1
P(X) = —ma st
for the cohomology H*(Syl»(M12,F2). The coefficient of x* in the expansion of p(x) is equal to

the dimension of the vector space H" (Syly(M)2,F>). The computation involves SINGULAR’s Groebner
basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.
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Example
gap> G:=SylowSubgroup(MathieuGroup(12),2);;
gap> P:=PoincareSeriesLHS(G);
(1)/(-x_173+3%x_1"2-3*x_1+1)

The additional following command uses the Poincare series
Example

gap> RankHomologyPGroup(G,P,1000) ;
251000

to determine that Hyooo(Syla(Mi2,7Z) is a direct sum of 251000 non-trivial cyclic 2-groups.

The following example constructs the series
_ 4% —x+1

p(x> T Ot 23 a2 —xt 1 . ) )

whose coefficient of x” is equal to the dimension of the vector space H"(M;;,IF) for all n in the
range 0 < n < 14. The coefficient is not guaranteed correct for n > 15.
Example
gap> PoincareSeriesPrimePart(MathieuGroup(11),2,14);
(x_174-x_1"3+x_1"2-x_1+1) /(x_1"6-x_1"5+x_1"4-2%x_1"3+x_1"2-x_1+1)

7.2 Nilpotent groups

The following example computes

Hi(N,Z) = (Z3)* & %

for the free nilpotent group N of class 2 on four generators.
Example
gap> F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);;
gap> GroupHomology(N,4) ;

(3, 3,3,3,0,0,0,0,0,0,o0o000,0,.0,0,00,0,.0,D0,
o, o, o, o, o0, o0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O,
o, o, o, o, 0, o0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O]

7.3 Crystallographic and Almost Crystallographic groups

The following example computes

Hs(G,Z) =L, ® Lo

for the 3-dimensional crystallographic space group G with Hermann-Mauguin symbol "P62"
Example
gap> GroupHomology (SpaceGroupBBNWZ("P62"),5) ;
[2, 2]

The following example computes
H(G,Z) =17
for an almost crystallographic group.
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Example
gap> G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 21 );;
gap> GroupCohomology(G,4);

[ 0]

7.4 Arithmetic groups

The following example computes

He(SLy(O,7) =7y ® Z1»

for @ the ring of integers of the number field Q(v/—2).
Example
gap> C:=ContractibleGcomplex("SL(2,0-2)");;
gap> R:=FreeGResolution(C,7);;
gap> Homology(TensorWithIntegers(R),6);
[ 2, 12]

7.5 Artin groups

The following example computes

Z n=0,1,7,8

Zy, n=2,3
H,(G,Z)={ Zy®Ze, n=4,6

Zs®Zg, n=25

0, n>38

for G the Artin group of type Eg. (Similar commands can be used to compute a resolution and
homology of arbitrary Artin monoids and, in thoses cases such as the spherical cases where the
K (7, 1)-conjecture is known to hold, the homology is equal to that of the corresponding Artin group.)

Example
gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3], (5,311, [5,[6,3]]1,[6,[7,3]1],[7,[8,311];;
gap> CoxeterDiagramDisplay(D);;

Example

gap> R:=ResolutionArtinGroup(D,9);;

gap> C:=TensorWithIntegers(R);;

gap> List([0..8],n->Homology(C,n));

trfoil1,cto1l, 21,021, 02,61,[3,61,[2,61,[01, [01]1

The Artin group G projects onto the Coxeter group W of type Eg. The group W has a natural
representation as a group of 8 x 8 integer matrices. This projection gives rise to a representation
p:G — GLg(Z). The following command computes the cohomology group H®(G,p) = (Z,)S.

Example

gap> G:=R!.group;;
gap> gensG:=Generators0fGroup(G);;
gap> W:=CoxeterDiagramMatCoxeterGroup(D);;
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gap> gensW:=Generators0fGroup (W) ;;

gap> rho:=GroupHomomorphismByImages (G,W,gensG,gensW) ;;
gap> C:=HomToIntegralModule(R,rho);;

gap> Cohomology(C,6);

[2,2,2,2,2, 2]

7.6 Graphs of groups

The following example computes

Hs(G,Z) =70 ®Zr ®Zr DZo D7)

for G the graph of groups corresponding to the amalgamated product G = Ss g, S4 of the symmet-
ric groups S5 and S4 over the canonical subgroup S3.
Example
gap> S5:=SymmetricGroup(5) ;SetName(S5,"S5");
gap> S4:=SymmetricGroup(4) ;SetName(S4,"S4");
gap> A:=SymmetricGroup(3) ;SetName(A,"S3");
gap> AS5:=GroupHomomorphismByFunction(A,S5,x->x);
gap> AS4:=GroupHomomorphismByFunction(A,S4,x->x);
gap> D:=[S5,54, [AS5,AS4]1];
gap> GraphOfGroupsDisplay (D) ;

Example
gap> R:=ResolutionGraph0fGroups(D,6);;

gap> Homology(TensorWithIntegers(R),5);
[2,2,2,2,2]

7.7 Lie algebra homology and free nilpotent groups

One method of producting a Lie algebra L from a group G is by forming the direct sum L(G) =
G/nGd»G/Gd G/1G @ - of the quotients of the lower central series 11G = G, %,+1G =
[1»G, G]. Commutation in G induces a Lie bracket L(G) x L(G) — L(G).

The homology H, (L) of a Lie algebra (with trivial coefficients) can be calculated as the homology
of the Chevalley-Eilenberg chain complex C,(L). This chain complex is implemented in HAP in the
cases where the underlying additive group of L is either finitely generated torsion free or finitely gener-
ated of prime exponent p. In these two cases the ground ring for the Lie algebra/ Chevalley-Eilenberg
complex is taken to be Z and Z, respectively.

For example, consider the quotient G = F /s F of the free group F = F(x,y) on two generators by
eighth term of its lower central series. So G is the free nilpotent group of class 7 on two generators.
The following commands compute Hs (L(G)) = Z @ Z§ ® 73} @ Z11, & Z2°?* and show that the fourth
homology in this case contains 2-, 3- and 11-torsion. (The commands take an hour or so to complete.)
Example
gap> G:=Image(NgEpimorphismNilpotentQuotient (FreeGroup(2),7));;
gap> L:=LowerCentralSeriesLieAlgebra(G);;
gap> h:=LieAlgebraHomology(L,4);;
gap> Collected(h);
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tfo, 20241, [2,771]1, [ 6,81, [ 12, 561 ], [ 132, 11 ] ]

For a free nilpotent group G the additive homology H,(L(G)) of the Lie algebra can be
computed more quickly in HAP than the integral group homology H,(G,Z). Clearly there are
isomorphismsH; (G) = H;(L(G)) = G of abelian groups in homological degree n = 1. Hopf’s for-
mula can be used to establish an isomorphism H>(G) = H>(L(G)) also in degree n = 2. The following
two theorems provide further isomorphisms that allow for the homology of a free nilpotent group to
be calculated more efficiently as the homology of the associated Lie algebra.

THEOREM 1. [KS98] Let G be a finitely generated free nilpotent group of class 2. Then the
integral group homology H,(G,Z) is isomorphic to the integral Lie algebra homology H,(L(G),Z) in
each degree n > 0.

THEOREM 2. [IO01] Let G be a finitely generated free nilpotent group (of any class). Then the
integral group homology H,(G,Z) is isomorphic to the integral Lie algebra homology H,(L(G),Z) in
degreesn=0,1,2,3.

We should remark that experimentation on free nilpotent groups of class > 4 has not yielded a
group for which the isomorphism H,(G,Z) = H,(L(G),G) fails. For instance, the isomorphism holds
in degree n = 4 for the free nilpotent group of class 5 on two generators, and for the free nilpotent
group of class 2 on four generators:

Example
gap> G:=Image (NqEpimorphismNilpotentQuotient (FreeGroup(2),5));;
gap> L:=LowerCentralSeriesLieAlgebra(G);;

gap> Collected( LieAlgebraHomology(L,4) );

(lo,8 1, [7,11]

gap> Collected( GroupHomology(G,4) );

(fo,81,[7,11]1

gap> G:=Image(NgEpimorphismNilpotentQuotient (FreeGroup(4),2));;
gap> L:=LowerCentralSeriesLieAlgebra(G);;

gap> Collected( LieAlgebraHomology(L,4) );

([o,81, [3,41]1]1

gap> Collected( GroupHomology(G,4) );

(CLo0,81,[3,41]

7.8 Cohomology with coefficients in a module

There are various ways to represent a ZG-module A with action G x A — A, (g,a) — o(g,a).

One possibility is to use the data type of a G-Outer Group which involves three components:
an ActedGroup A; an ActingGroup G; a Mapping (g,a) — o(g,a). The following example uses
this data type to compute the cohomology H*(G,A) = Zs @ Z1¢ of the symmetric group G = Sg with
coefficients in the integers A = Z where odd permutations act non-trivially on A.

Example

gap> G:=SymmetricGroup(6);;

gap> A:=AbelianPcpGroup([0]);;
gap> alpha:=function(g,a); return a”SignPerm(g); end;;
gap> A:=GModuleAsGOuterGroup(G,A,alpha);
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ZG-module with abelian invariants [ O ] and G= SymmetricGroup( [ 1 .. 6 ] )

gap> R:=ResolutionFiniteGroup(G,5);;
gap> C:=HomToGModule(R,A);
G-cocomplex of length 5 .

gap> Cohomology(C,4);
[2,2,5]

If A =7" and G acts as
GxA—A,(gv)p(g)v
where p: G — Gl,(Z) is a (not necessarily faithful) matrix representation of degree n then we can

avoid the use of G-outer groups and use just the homomorphism p instead. The following example
uses this data type to compute the cohomology

HS(G,A) =7,
and the homology
Hs(G,A) =0

of the alternating group G = As with coefficients in A = Z> where elements of G act on Z> via an
irreducible representation.

Example

gap> G:=AlternatingGroup(5);;
gap> rho:=IrreducibleRepresentations(G) [5];
[ (1,2,3,4,5), (3,4,5) 1 >
[
tcto,o0,1,0,01, -1, -1,0,0,11, [0
[+, 0, -1, 0, -11, [ -1, -1, 0, -1, 01
rr-1, -1,0,0,11, 01,0, -1, 0, -171, [
(o,0,10,01,[0,0,0,1,01171]1
gap> R:=ResolutionFiniteGroup(G,7);;
gap> C:=HomToIntegralModule(R,rho);;
gap> Cohomology(C,6) ;
[ 2]
gap> D:=TensorWithIntegralModule (R,rho);
Chain complex of length 7 in characteristic O .

gap> Homology(D,6);
1]

If V = K9 is a vetor space of dimension d over the field K = GF(p) with p a prime and G acts on
V via a homomorphism p: G — GL,;(K) then the homology H"(G,V) can again be computed without
the use of G-outer groups. As an example, the following commands compute

H*(GL(3,2),V) = K>

where K = GF(2) and GL(3,2) acts with its natural action on V = K>,
Example

gap> G:=GL(3,2);;

gap> rho:=GroupHomomorphismByFunction(G,G,x->x);;
gap> R:=ResolutionFiniteGroup(G,5);;

gap> C:=HomToModPModule(R,rho);;
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gap> Cohomology(C,4) ;
2

It can be computationally difficult to compute high degree terms in resolutions for large finite
groups. But the p-primary part of the homology can be computed using resolutions of Sylow
p-subgroups. This approach is used in the following example that computes the 2-primary part

Hj (A7,A)(2) = Zz @Zz @Z4

of the degree 11 homology of the alternating group A7 of degree 7 with coefficients in the module
A =7 on which A7 acts by permuting basis vectors.
Example

gap> G:=AlternatingGroup(7);;

gap> rho:=PermToMatrixGroup(G) ;;

gap> R:=ResolutionFiniteGroup(SylowSubgroup(G,2),12);;

gap> F:=function(X); return TensorWithIntegralModule(X,rho); end;;
gap> PrimePartDerivedFunctor(G,R,F,11);

[ 2, 2, 4]

Similar commands compute
H3(A10,A) () = Z4
with coefficient module A = Z'° on which A1 acts by permuting basis vectors.
Example

gap> G:=AlternatingGroup(10);;

gap> rho:=PermToMatrixGroup(G);;

gap> R:=ResolutionFiniteGroup(SylowSubgroup(G,2),4);;

gap> F:=function(X); return TensorWithIntegralModule(X,rho); end;;
gap> PrimePartDerivedFunctor(G,R,F,3);

[ 4]

The following commands compute

Hy00(GL(3,2),V) = K*

where V is the vector space of dimension 3 over K = GF(2) acting via some irreducible represen-
tation p: GL(3,2) — GL(V).

Example

gap> G:=GL(3,2);;

gap> rho:=IrreducibleRepresentations(G,GF(2)) [3];

CompositionMapping( [ (5,7)(6,8), (2,3,5)(4,7,6) 1 ->

[ <an immutable 3x3 matrix over GF2>, <an immutable 3x3 matrix over GF2> ],
<action isomorphism> )

gap> F:=function(X); return TensorWithModPModule(X,rho); end;;

gap> S:=ResolutionPrimePowerGroup (SylowSubgroup(G,2),101);;

gap> PrimePartDerivedFunctor(G,S,F,100);

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,
2, 2,2,2,2,2,2,2, 2]
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7.9 Cohomology as a functor of the first variable

Suppose given a group homomorphism f:G; — G, and a Gp-module A. Then A is nat-
urally a Gi-module with action via f, and there is an induced cohomology homomorphism
H"(f,A):H"(G,,A) — H"(G},A).

The following example computes this cohomology homomorphism in degree n = 6 for the in-
clusion f:As — S5 and A = Z° with action that permutes the canonical basis. The final commands
determine that the kernel of the homomorphism H®(f,A) is the Klein group of order 4 and that the

cokernel is cyclic of order 6.
Example

gap> Gl:=AlternatingGroup(5);;

gap> G2:=SymmetricGroup(5);;

gap> f:=GroupHomomorphismByFunction(G1,G2,x->x);;
gap> pi:=PermToMatrixGroup(G2,5);;

gap> Rl:=ResolutionFiniteGroup(G1,7);;

gap> R2:=ResolutionFiniteGroup(G2,7);;

gap> F:=EquivariantChainMap(R1,R2,f);;

gap> C:=HomToIntegralModule(F,pi);;

gap> c:=Cohomology(C,6) ;

[gl, g2, g3 1 > [ id, id, g3 ]

gap> AbelianInvariants(Kernel(c));

[2, 2]
gap> AbelianInvariants(Range(c)/Image(c));
[ 2, 3]

7.10 Cohomology as a functor of the second variable and the long exact
coefficient sequence

A short exact sequence of ZG-modules A — B — C induces a long exact sequence of cohomology
groups

— H"(G,A) — H"(G,B) — H"(G,C) — H""'(G,A) — .

Consider the symmetric group G = S4 and the sequence Z4 — Zg — Z of trivial ZG-modules.
The following commands compute the induced cohomology homomorphism

fiH?(S4,74) — H?(S4,Zg)

and determine that the image of this induced homomorphism has order 8 and that its kernel has

order 2.
Example

gap> G:=SymmetricGroup(4);;

gap> x:=(1,2,3,4,5,6,7,8);;

gap> a:=Group(x~2);;

gap> b:=Group(x);;

gap> ahomb:=GroupHomomorphismByFunction(a,b,y->y);;
gap> A:=TrivialGModuleAsGOuterGroup(G,a);;

gap> B:=TrivialGModuleAsGOuterGroup(G,b);;

gap> phi:=GOuterGroupHomomorphism();;

gap> phi!.Source:=A;;

gap> phi!.Target:=B;;
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gap> phi!.Mapping:=ahomb; ;
gap> Hphi:=CohomologyHomomorphism(phi,3);;

gap> Size(ImageOfGOuterGroupHomomorphism(Hphi)) ;

gap> Size(Kernel0fGOuterGroupHomomorphism(Hphi)) ;

The following commands then compute the homomorphism

H3(S4,Zg) — HS(S4,Zz)

induced by Z4 — Zg — Z;, and determine that the kernel of this homomorphsim has order 8.
Example

gap> bhomc:=NaturalHomomorphismByNormalSubgroup(b,a) ;
gap> B:=TrivialGModuleAsGOuterGroup(G,b) ;

gap> C:=TrivialGModuleAsGOuterGroup (G, Image (bhomc)) ;
gap> psi:=GOuterGroupHomomorphism() ;

gap> psi!.Source:=B;

gap> psi!.Target:=C;

gap> psi!.Mapping:=bhomc;

gap> Hpsi:=CohomologyHomomorphism(psi,3);

gap> Size(Kernel0fGOuterGroupHomomorphism(Hpsi)) ;
8

The following commands then compute the connecting homomorphism
HZ(S4,Zz) — HS(S4,Z4)

and determine that the image of this homomorphism has order 2.
Example

gap> delta:=ConnectingCohomologyHomomorphism(psi,2);;
gap> Size(ImageOfGOuterGroupHomomorphism(delta)) ;

Note that the various orders are consistent with exactness of the sequence

HZ(S4,Zz) — H3(S4,Z4) —>H3(S4,Zg) —>H3(S4,Zz) .

7.11 Transfer Homomorphism

Consider the action of the symmetric group G = S5 on A = Z> which permutes the canonical basis.
The action restricts to the sylow 2-subgroup P = Syl;(G). The following commands compute the
cohomology transfer homomorphism ¢*: H*(P,A) — H*(Ss,A) and determine its kernel and image.
The integral homology transfer #4: H(Ss,7Z) — Hs(P,7Z) is also computed.

Example
gap> G:=SymmetricGroup(5);;

gap> P:=SylowSubgroup(G,2);;

gap> R:=ResolutionFiniteGroup(G,5);;
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gap> A:=PermToMatrixGroup(G);;
gap> tr:=TransferCochainMap(R,P,A);
Cochain Map between complexes of length 5 .

gap> t4:=Cohomology(tr,4);

[ g1, g2, g3, g4 1 -> [ id, g1, g2, g4 ]
gap> StructureDescription(Kernel(t4));
"C2 x C2"

gap> StructureDescription(Image(t4));
"C4 x C2"

gap> tr:=TransferChainMap(R,P);
Chain Map between complexes of length 5 .

gap> Homology(tr,4) ;
[gt]l >[gl]

7.12 Cohomology rings of finite fundamental groups of 3-manifolds

A spherical 3-manifold is a 3-manifold arising as the quotient S*/T" of the 3-sphere S* by a finite
subgroup I' of SO(4) acting freely as rotations. The geometrization conjecture, proved by Grigori
Perelman, implies that every closed connected 